| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <complex> |
| #include <cmath> |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| template <int DataLayout> |
| static void test_1D_fft_ifft_invariant(int sequence_length) { |
| Tensor<double, 1, DataLayout> tensor(sequence_length); |
| tensor.setRandom(); |
| |
| array<int, 1> fft; |
| fft[0] = 0; |
| |
| Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft; |
| Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft_ifft; |
| |
| tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); |
| tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft); |
| |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), sequence_length); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), sequence_length); |
| |
| for (int i = 0; i < sequence_length; ++i) { |
| VERIFY_IS_APPROX(static_cast<float>(tensor(i)), static_cast<float>(std::real(tensor_after_fft_ifft(i)))); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_2D_fft_ifft_invariant(int dim0, int dim1) { |
| Tensor<double, 2, DataLayout> tensor(dim0, dim1); |
| tensor.setRandom(); |
| |
| array<int, 2> fft; |
| fft[0] = 0; |
| fft[1] = 1; |
| |
| Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft; |
| Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft_ifft; |
| |
| tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); |
| tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft); |
| |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0); |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1); |
| |
| for (int i = 0; i < dim0; ++i) { |
| for (int j = 0; j < dim1; ++j) { |
| // std::cout << "[" << i << "][" << j << "]" << " Original data: " << tensor(i,j) << " Transformed data:" << |
| // tensor_after_fft_ifft(i,j) << std::endl; |
| VERIFY_IS_APPROX(static_cast<float>(tensor(i, j)), static_cast<float>(std::real(tensor_after_fft_ifft(i, j)))); |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_3D_fft_ifft_invariant(int dim0, int dim1, int dim2) { |
| Tensor<double, 3, DataLayout> tensor(dim0, dim1, dim2); |
| tensor.setRandom(); |
| |
| array<int, 3> fft; |
| fft[0] = 0; |
| fft[1] = 1; |
| fft[2] = 2; |
| |
| Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft; |
| Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft_ifft; |
| |
| tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); |
| tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft); |
| |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0); |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1); |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2); |
| |
| for (int i = 0; i < dim0; ++i) { |
| for (int j = 0; j < dim1; ++j) { |
| for (int k = 0; k < dim2; ++k) { |
| VERIFY_IS_APPROX(static_cast<float>(tensor(i, j, k)), |
| static_cast<float>(std::real(tensor_after_fft_ifft(i, j, k)))); |
| } |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_sub_fft_ifft_invariant(int dim0, int dim1, int dim2, int dim3) { |
| Tensor<double, 4, DataLayout> tensor(dim0, dim1, dim2, dim3); |
| tensor.setRandom(); |
| |
| array<int, 2> fft; |
| fft[0] = 2; |
| fft[1] = 0; |
| |
| Tensor<std::complex<double>, 4, DataLayout> tensor_after_fft; |
| Tensor<double, 4, DataLayout> tensor_after_fft_ifft; |
| |
| tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); |
| tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::RealPart, Eigen::FFT_REVERSE>(fft); |
| |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0); |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1); |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2); |
| VERIFY_IS_EQUAL(tensor_after_fft.dimension(3), dim3); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2); |
| VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(3), dim3); |
| |
| for (int i = 0; i < dim0; ++i) { |
| for (int j = 0; j < dim1; ++j) { |
| for (int k = 0; k < dim2; ++k) { |
| for (int l = 0; l < dim3; ++l) { |
| VERIFY_IS_APPROX(static_cast<float>(tensor(i, j, k, l)), |
| static_cast<float>(tensor_after_fft_ifft(i, j, k, l))); |
| } |
| } |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_ifft) { |
| CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(4)); |
| CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(16)); |
| CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(32)); |
| CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(1024 * 1024)); |
| |
| CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(4, 4)); |
| CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(8, 16)); |
| CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(16, 32)); |
| CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(1024, 1024)); |
| |
| CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(4, 4, 4)); |
| CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(8, 16, 32)); |
| CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(16, 4, 8)); |
| CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(256, 256, 256)); |
| |
| CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(4, 4, 4, 4)); |
| CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(8, 16, 32, 64)); |
| CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(16, 4, 8, 12)); |
| CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(64, 64, 64, 64)); |
| } |