| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| void test_simple_patch() { |
| Tensor<float, 4> tensor(2, 3, 5, 7); |
| tensor.setRandom(); |
| Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); |
| VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); |
| VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); |
| |
| // Single pixel patch: ColMajor |
| Tensor<float, 5> single_pixel_patch; |
| single_pixel_patch = tensor.extract_image_patches(1, 1); |
| VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2); |
| VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1); |
| VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1); |
| VERIFY_IS_EQUAL(single_pixel_patch.dimension(3), 3 * 5); |
| VERIFY_IS_EQUAL(single_pixel_patch.dimension(4), 7); |
| |
| // Single pixel patch: RowMajor |
| Tensor<float, 5, RowMajor> single_pixel_patch_row_major; |
| single_pixel_patch_row_major = tensor_row_major.extract_image_patches(1, 1); |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(0), 7); |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(1), 3 * 5); |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(2), 1); |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(3), 1); |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(4), 2); |
| |
| for (int i = 0; i < tensor.size(); ++i) { |
| // ColMajor |
| if (tensor.data()[i] != single_pixel_patch.data()[i]) { |
| std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " |
| << single_pixel_patch.data()[i] << std::endl; |
| } |
| VERIFY_IS_EQUAL(single_pixel_patch.data()[i], tensor.data()[i]); |
| // RowMajor |
| if (tensor_row_major.data()[i] != single_pixel_patch_row_major.data()[i]) { |
| std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " |
| << single_pixel_patch_row_major.data()[i] << std::endl; |
| } |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.data()[i], tensor_row_major.data()[i]); |
| VERIFY_IS_EQUAL(tensor.data()[i], tensor_row_major.data()[i]); |
| VERIFY_IS_EQUAL(single_pixel_patch.data()[i], single_pixel_patch_row_major.data()[i]); |
| } |
| |
| // Entire image patch: ColMajor |
| Tensor<float, 5> entire_image_patch; |
| entire_image_patch = tensor.extract_image_patches(3, 5); |
| VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2); |
| VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3); |
| VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5); |
| VERIFY_IS_EQUAL(entire_image_patch.dimension(3), 3 * 5); |
| VERIFY_IS_EQUAL(entire_image_patch.dimension(4), 7); |
| |
| // Entire image patch: RowMajor |
| Tensor<float, 5, RowMajor> entire_image_patch_row_major; |
| entire_image_patch_row_major = tensor_row_major.extract_image_patches(3, 5); |
| VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 7); |
| VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 3 * 5); |
| VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 5); |
| VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(3), 3); |
| VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(4), 2); |
| |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| int patchId = i + 3 * j; |
| for (int r = 0; r < 3; ++r) { |
| for (int c = 0; c < 5; ++c) { |
| for (int d = 0; d < 2; ++d) { |
| for (int b = 0; b < 7; ++b) { |
| float expected = 0.0f; |
| float expected_row_major = 0.0f; |
| if (r - 1 + i >= 0 && c - 2 + j >= 0 && r - 1 + i < 3 && c - 2 + j < 5) { |
| expected = tensor(d, r - 1 + i, c - 2 + j, b); |
| expected_row_major = tensor_row_major(b, c - 2 + j, r - 1 + i, d); |
| } |
| // ColMajor |
| if (entire_image_patch(d, r, c, patchId, b) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(entire_image_patch(d, r, c, patchId, b), expected); |
| // RowMajor |
| if (entire_image_patch_row_major(b, patchId, c, r, d) != expected_row_major) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(entire_image_patch_row_major(b, patchId, c, r, d), expected_row_major); |
| // Check that ColMajor and RowMajor agree. |
| VERIFY_IS_EQUAL(expected, expected_row_major); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // 2D patch: ColMajor |
| Tensor<float, 5> twod_patch; |
| twod_patch = tensor.extract_image_patches(2, 2); |
| VERIFY_IS_EQUAL(twod_patch.dimension(0), 2); |
| VERIFY_IS_EQUAL(twod_patch.dimension(1), 2); |
| VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); |
| VERIFY_IS_EQUAL(twod_patch.dimension(3), 3 * 5); |
| VERIFY_IS_EQUAL(twod_patch.dimension(4), 7); |
| |
| // 2D patch: RowMajor |
| Tensor<float, 5, RowMajor> twod_patch_row_major; |
| twod_patch_row_major = tensor_row_major.extract_image_patches(2, 2); |
| VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 7); |
| VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 3 * 5); |
| VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2); |
| VERIFY_IS_EQUAL(twod_patch_row_major.dimension(3), 2); |
| VERIFY_IS_EQUAL(twod_patch_row_major.dimension(4), 2); |
| |
| // Based on the calculation described in TensorTraits.h, padding happens to be 0. |
| int row_padding = 0; |
| int col_padding = 0; |
| int stride = 1; |
| |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| int patchId = i + 3 * j; |
| for (int r = 0; r < 2; ++r) { |
| for (int c = 0; c < 2; ++c) { |
| for (int d = 0; d < 2; ++d) { |
| for (int b = 0; b < 7; ++b) { |
| float expected = 0.0f; |
| float expected_row_major = 0.0f; |
| int row_offset = r * stride + i - row_padding; |
| int col_offset = c * stride + j - col_padding; |
| // ColMajor |
| if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor.dimension(1) && |
| col_offset < tensor.dimension(2)) { |
| expected = tensor(d, row_offset, col_offset, b); |
| } |
| if (twod_patch(d, r, c, patchId, b) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(twod_patch(d, r, c, patchId, b), expected); |
| |
| // RowMajor |
| if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor_row_major.dimension(2) && |
| col_offset < tensor_row_major.dimension(1)) { |
| expected_row_major = tensor_row_major(b, col_offset, row_offset, d); |
| } |
| if (twod_patch_row_major(b, patchId, c, r, d) != expected_row_major) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(twod_patch_row_major(b, patchId, c, r, d), expected_row_major); |
| // Check that ColMajor and RowMajor agree. |
| VERIFY_IS_EQUAL(expected, expected_row_major); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Verifies VALID padding (no padding) with incrementing values. |
| void test_patch_padding_valid() { |
| int input_depth = 3; |
| int input_rows = 3; |
| int input_cols = 3; |
| int input_batches = 1; |
| int ksize = 2; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>. |
| int stride = 2; // Only same stride is supported. |
| Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches); |
| // Initializes tensor with incrementing numbers. |
| for (int i = 0; i < tensor.size(); ++i) { |
| tensor.data()[i] = i + 1; |
| } |
| // ColMajor |
| Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID); |
| |
| VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth |
| VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows |
| VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols |
| VERIFY_IS_EQUAL(result.dimension(3), 1); // number of patches |
| VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches |
| |
| // RowMajor |
| Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); |
| VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); |
| VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); |
| |
| Tensor<float, 5, RowMajor> result_row_major = |
| tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID); |
| VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4)); |
| VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3)); |
| VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(result.dimension(3), result_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(result.dimension(4), result_row_major.dimension(0)); |
| |
| // No padding is carried out. |
| int row_padding = 0; |
| int col_padding = 0; |
| |
| for (int i = 0; (i + stride + ksize - 1) < input_rows; i += stride) { // input rows |
| for (int j = 0; (j + stride + ksize - 1) < input_cols; j += stride) { // input cols |
| int patchId = i + input_rows * j; |
| for (int r = 0; r < ksize; ++r) { // patch rows |
| for (int c = 0; c < ksize; ++c) { // patch cols |
| for (int d = 0; d < input_depth; ++d) { // depth |
| for (int b = 0; b < input_batches; ++b) { // batch |
| float expected = 0.0f; |
| float expected_row_major = 0.0f; |
| int row_offset = r + i - row_padding; |
| int col_offset = c + j - col_padding; |
| if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) { |
| expected = tensor(d, row_offset, col_offset, b); |
| expected_row_major = tensor_row_major(b, col_offset, row_offset, d); |
| } |
| // ColMajor |
| if (result(d, r, c, patchId, b) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(result(d, r, c, patchId, b), expected); |
| // RowMajor |
| if (result_row_major(b, patchId, c, r, d) != expected_row_major) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(result_row_major(b, patchId, c, r, d), expected_row_major); |
| // Check that ColMajor and RowMajor agree. |
| VERIFY_IS_EQUAL(expected, expected_row_major); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Verifies VALID padding (no padding) with the same value. |
| void test_patch_padding_valid_same_value() { |
| int input_depth = 1; |
| int input_rows = 5; |
| int input_cols = 5; |
| int input_batches = 2; |
| int ksize = 3; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>. |
| int stride = 2; // Only same stride is supported. |
| // ColMajor |
| Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches); |
| tensor = tensor.constant(11.0f); |
| Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID); |
| |
| VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth |
| VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows |
| VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols |
| VERIFY_IS_EQUAL(result.dimension(3), 4); // number of patches |
| VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches |
| |
| // RowMajor |
| Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); |
| VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); |
| VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); |
| |
| Tensor<float, 5, RowMajor> result_row_major = |
| tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID); |
| VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4)); |
| VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3)); |
| VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(result.dimension(3), result_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(result.dimension(4), result_row_major.dimension(0)); |
| |
| // No padding is carried out. |
| int row_padding = 0; |
| int col_padding = 0; |
| |
| for (int i = 0; (i + stride + ksize - 1) <= input_rows; i += stride) { // input rows |
| for (int j = 0; (j + stride + ksize - 1) <= input_cols; j += stride) { // input cols |
| int patchId = i + input_rows * j; |
| for (int r = 0; r < ksize; ++r) { // patch rows |
| for (int c = 0; c < ksize; ++c) { // patch cols |
| for (int d = 0; d < input_depth; ++d) { // depth |
| for (int b = 0; b < input_batches; ++b) { // batch |
| float expected = 0.0f; |
| float expected_row_major = 0.0f; |
| int row_offset = r + i - row_padding; |
| int col_offset = c + j - col_padding; |
| if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) { |
| expected = tensor(d, row_offset, col_offset, b); |
| expected_row_major = tensor_row_major(b, col_offset, row_offset, d); |
| } |
| // ColMajor |
| if (result(d, r, c, patchId, b) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(result(d, r, c, patchId, b), expected); |
| // RowMajor |
| if (result_row_major(b, patchId, c, r, d) != expected_row_major) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(result_row_major(b, patchId, c, r, d), expected_row_major); |
| // Check that ColMajor and RowMajor agree. |
| VERIFY_IS_EQUAL(expected, expected_row_major); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Verifies SAME padding. |
| void test_patch_padding_same() { |
| int input_depth = 3; |
| int input_rows = 4; |
| int input_cols = 2; |
| int input_batches = 1; |
| int ksize = 2; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>. |
| int stride = 2; // Only same stride is supported. |
| // ColMajor |
| Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches); |
| // Initializes tensor with incrementing numbers. |
| for (int i = 0; i < tensor.size(); ++i) { |
| tensor.data()[i] = i + 1; |
| } |
| Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, PADDING_SAME); |
| |
| VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth |
| VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows |
| VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols |
| VERIFY_IS_EQUAL(result.dimension(3), 2); // number of patches |
| VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches |
| |
| // RowMajor |
| Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); |
| VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); |
| VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); |
| |
| Tensor<float, 5, RowMajor> result_row_major = |
| tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, PADDING_SAME); |
| VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4)); |
| VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3)); |
| VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(result.dimension(3), result_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(result.dimension(4), result_row_major.dimension(0)); |
| |
| // Based on the calculation described in TensorTraits.h, padding happens to be |
| // 0. |
| int row_padding = 0; |
| int col_padding = 0; |
| |
| for (int i = 0; (i + stride + ksize - 1) <= input_rows; i += stride) { // input rows |
| for (int j = 0; (j + stride + ksize - 1) <= input_cols; j += stride) { // input cols |
| int patchId = i + input_rows * j; |
| for (int r = 0; r < ksize; ++r) { // patch rows |
| for (int c = 0; c < ksize; ++c) { // patch cols |
| for (int d = 0; d < input_depth; ++d) { // depth |
| for (int b = 0; b < input_batches; ++b) { // batch |
| float expected = 0.0f; |
| float expected_row_major = 0.0f; |
| int row_offset = r * stride + i - row_padding; |
| int col_offset = c * stride + j - col_padding; |
| if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) { |
| expected = tensor(d, row_offset, col_offset, b); |
| expected_row_major = tensor_row_major(b, col_offset, row_offset, d); |
| } |
| // ColMajor |
| if (result(d, r, c, patchId, b) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(result(d, r, c, patchId, b), expected); |
| // RowMajor |
| if (result_row_major(b, patchId, c, r, d) != expected_row_major) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(result_row_major(b, patchId, c, r, d), expected_row_major); |
| // Check that ColMajor and RowMajor agree. |
| VERIFY_IS_EQUAL(expected, expected_row_major); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Verifies that SAME padding, when computed as negative values, will be clipped |
| // to zero. |
| void test_patch_padding_same_negative_padding_clip_to_zero() { |
| int input_depth = 1; |
| int input_rows = 15; |
| int input_cols = 1; |
| int input_batches = 1; |
| int ksize = 1; // Corresponds to the Rows and Cols for |
| // tensor.extract_image_patches<>. |
| int row_stride = 5; |
| int col_stride = 1; |
| // ColMajor |
| Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches); |
| // Initializes tensor with incrementing numbers. |
| for (int i = 0; i < tensor.size(); ++i) { |
| tensor.data()[i] = i + 1; |
| } |
| Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, row_stride, col_stride, 1, 1, PADDING_SAME); |
| // row padding will be computed as -2 originally and then be clipped to 0. |
| VERIFY_IS_EQUAL(result.coeff(0), 1.0f); |
| VERIFY_IS_EQUAL(result.coeff(1), 6.0f); |
| VERIFY_IS_EQUAL(result.coeff(2), 11.0f); |
| |
| VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth |
| VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows |
| VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols |
| VERIFY_IS_EQUAL(result.dimension(3), 3); // number of patches |
| VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches |
| |
| // RowMajor |
| Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); |
| VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); |
| VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); |
| |
| Tensor<float, 5, RowMajor> result_row_major = |
| tensor_row_major.extract_image_patches(ksize, ksize, row_stride, col_stride, 1, 1, PADDING_SAME); |
| VERIFY_IS_EQUAL(result_row_major.coeff(0), 1.0f); |
| VERIFY_IS_EQUAL(result_row_major.coeff(1), 6.0f); |
| VERIFY_IS_EQUAL(result_row_major.coeff(2), 11.0f); |
| |
| VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4)); |
| VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3)); |
| VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(result.dimension(3), result_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(result.dimension(4), result_row_major.dimension(0)); |
| } |
| |
| void test_patch_no_extra_dim() { |
| Tensor<float, 3> tensor(2, 3, 5); |
| tensor.setRandom(); |
| Tensor<float, 3, RowMajor> tensor_row_major = tensor.swap_layout(); |
| VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(2)); |
| VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(1)); |
| VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(0)); |
| |
| // Single pixel patch: ColMajor |
| Tensor<float, 4> single_pixel_patch; |
| single_pixel_patch = tensor.extract_image_patches(1, 1); |
| VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2); |
| VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1); |
| VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1); |
| VERIFY_IS_EQUAL(single_pixel_patch.dimension(3), 3 * 5); |
| |
| // Single pixel patch: RowMajor |
| Tensor<float, 4, RowMajor> single_pixel_patch_row_major; |
| single_pixel_patch_row_major = tensor_row_major.extract_image_patches(1, 1); |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(0), 3 * 5); |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(1), 1); |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(2), 1); |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(3), 2); |
| |
| for (int i = 0; i < tensor.size(); ++i) { |
| // ColMajor |
| if (tensor.data()[i] != single_pixel_patch.data()[i]) { |
| std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " |
| << single_pixel_patch.data()[i] << std::endl; |
| } |
| VERIFY_IS_EQUAL(single_pixel_patch.data()[i], tensor.data()[i]); |
| // RowMajor |
| if (tensor_row_major.data()[i] != single_pixel_patch_row_major.data()[i]) { |
| std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " |
| << single_pixel_patch_row_major.data()[i] << std::endl; |
| } |
| VERIFY_IS_EQUAL(single_pixel_patch_row_major.data()[i], tensor_row_major.data()[i]); |
| VERIFY_IS_EQUAL(tensor.data()[i], tensor_row_major.data()[i]); |
| VERIFY_IS_EQUAL(single_pixel_patch.data()[i], single_pixel_patch_row_major.data()[i]); |
| } |
| |
| // Entire image patch: ColMajor |
| Tensor<float, 4> entire_image_patch; |
| entire_image_patch = tensor.extract_image_patches(3, 5); |
| VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2); |
| VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3); |
| VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5); |
| VERIFY_IS_EQUAL(entire_image_patch.dimension(3), 3 * 5); |
| |
| // Entire image patch: RowMajor |
| Tensor<float, 4, RowMajor> entire_image_patch_row_major; |
| entire_image_patch_row_major = tensor_row_major.extract_image_patches(3, 5); |
| VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 3 * 5); |
| VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 5); |
| VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 3); |
| VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(3), 2); |
| |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| int patchId = i + 3 * j; |
| for (int r = 0; r < 3; ++r) { |
| for (int c = 0; c < 5; ++c) { |
| for (int d = 0; d < 2; ++d) { |
| float expected = 0.0f; |
| float expected_row_major = 0.0f; |
| if (r - 1 + i >= 0 && c - 2 + j >= 0 && r - 1 + i < 3 && c - 2 + j < 5) { |
| expected = tensor(d, r - 1 + i, c - 2 + j); |
| expected_row_major = tensor_row_major(c - 2 + j, r - 1 + i, d); |
| } |
| // ColMajor |
| if (entire_image_patch(d, r, c, patchId) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d |
| << std::endl; |
| } |
| VERIFY_IS_EQUAL(entire_image_patch(d, r, c, patchId), expected); |
| // RowMajor |
| if (entire_image_patch_row_major(patchId, c, r, d) != expected_row_major) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d |
| << std::endl; |
| } |
| VERIFY_IS_EQUAL(entire_image_patch_row_major(patchId, c, r, d), expected_row_major); |
| // Check that ColMajor and RowMajor agree. |
| VERIFY_IS_EQUAL(expected, expected_row_major); |
| } |
| } |
| } |
| } |
| } |
| |
| // 2D patch: ColMajor |
| Tensor<float, 4> twod_patch; |
| twod_patch = tensor.extract_image_patches(2, 2); |
| VERIFY_IS_EQUAL(twod_patch.dimension(0), 2); |
| VERIFY_IS_EQUAL(twod_patch.dimension(1), 2); |
| VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); |
| VERIFY_IS_EQUAL(twod_patch.dimension(3), 3 * 5); |
| |
| // 2D patch: RowMajor |
| Tensor<float, 4, RowMajor> twod_patch_row_major; |
| twod_patch_row_major = tensor_row_major.extract_image_patches(2, 2); |
| VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 3 * 5); |
| VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 2); |
| VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2); |
| VERIFY_IS_EQUAL(twod_patch_row_major.dimension(3), 2); |
| |
| // Based on the calculation described in TensorTraits.h, padding happens to be 0. |
| int row_padding = 0; |
| int col_padding = 0; |
| int stride = 1; |
| |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| int patchId = i + 3 * j; |
| for (int r = 0; r < 2; ++r) { |
| for (int c = 0; c < 2; ++c) { |
| for (int d = 0; d < 2; ++d) { |
| float expected = 0.0f; |
| float expected_row_major = 0.0f; |
| int row_offset = r * stride + i - row_padding; |
| int col_offset = c * stride + j - col_padding; |
| // ColMajor |
| if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor.dimension(1) && |
| col_offset < tensor.dimension(2)) { |
| expected = tensor(d, row_offset, col_offset); |
| } |
| if (twod_patch(d, r, c, patchId) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d |
| << std::endl; |
| } |
| VERIFY_IS_EQUAL(twod_patch(d, r, c, patchId), expected); |
| // RowMajor |
| if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor_row_major.dimension(1) && |
| col_offset < tensor_row_major.dimension(0)) { |
| expected_row_major = tensor_row_major(col_offset, row_offset, d); |
| } |
| if (twod_patch_row_major(patchId, c, r, d) != expected_row_major) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d |
| << std::endl; |
| } |
| VERIFY_IS_EQUAL(twod_patch_row_major(patchId, c, r, d), expected_row_major); |
| // Check that ColMajor and RowMajor agree. |
| VERIFY_IS_EQUAL(expected, expected_row_major); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void test_imagenet_patches() { |
| // Test the code on typical configurations used by the 'imagenet' benchmarks at |
| // https://github.com/soumith/convnet-benchmarks |
| // ColMajor |
| Tensor<float, 4> l_in(3, 128, 128, 16); |
| l_in.setRandom(); |
| Tensor<float, 5> l_out = l_in.extract_image_patches(11, 11); |
| VERIFY_IS_EQUAL(l_out.dimension(0), 3); |
| VERIFY_IS_EQUAL(l_out.dimension(1), 11); |
| VERIFY_IS_EQUAL(l_out.dimension(2), 11); |
| VERIFY_IS_EQUAL(l_out.dimension(3), 128 * 128); |
| VERIFY_IS_EQUAL(l_out.dimension(4), 16); |
| |
| // RowMajor |
| Tensor<float, 5, RowMajor> l_out_row_major = l_in.swap_layout().extract_image_patches(11, 11); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 16); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 128 * 128); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 11); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 11); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 3); |
| |
| for (int b = 0; b < 16; ++b) { |
| for (int i = 0; i < 128; ++i) { |
| for (int j = 0; j < 128; ++j) { |
| int patchId = i + 128 * j; |
| for (int c = 0; c < 11; ++c) { |
| for (int r = 0; r < 11; ++r) { |
| for (int d = 0; d < 3; ++d) { |
| float expected = 0.0f; |
| if (r - 5 + i >= 0 && c - 5 + j >= 0 && r - 5 + i < 128 && c - 5 + j < 128) { |
| expected = l_in(d, r - 5 + i, c - 5 + j, b); |
| } |
| // ColMajor |
| if (l_out(d, r, c, patchId, b) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); |
| // RowMajor |
| if (l_out_row_major(b, patchId, c, r, d) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // ColMajor |
| l_in.resize(16, 64, 64, 32); |
| l_in.setRandom(); |
| l_out = l_in.extract_image_patches(9, 9); |
| VERIFY_IS_EQUAL(l_out.dimension(0), 16); |
| VERIFY_IS_EQUAL(l_out.dimension(1), 9); |
| VERIFY_IS_EQUAL(l_out.dimension(2), 9); |
| VERIFY_IS_EQUAL(l_out.dimension(3), 64 * 64); |
| VERIFY_IS_EQUAL(l_out.dimension(4), 32); |
| |
| // RowMajor |
| l_out_row_major = l_in.swap_layout().extract_image_patches(9, 9); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 32); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 64 * 64); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 9); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 9); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 16); |
| |
| for (int b = 0; b < 32; ++b) { |
| for (int i = 0; i < 64; ++i) { |
| for (int j = 0; j < 64; ++j) { |
| int patchId = i + 64 * j; |
| for (int c = 0; c < 9; ++c) { |
| for (int r = 0; r < 9; ++r) { |
| for (int d = 0; d < 16; ++d) { |
| float expected = 0.0f; |
| if (r - 4 + i >= 0 && c - 4 + j >= 0 && r - 4 + i < 64 && c - 4 + j < 64) { |
| expected = l_in(d, r - 4 + i, c - 4 + j, b); |
| } |
| // ColMajor |
| if (l_out(d, r, c, patchId, b) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); |
| // RowMajor |
| if (l_out_row_major(b, patchId, c, r, d) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // ColMajor |
| l_in.resize(32, 16, 16, 32); |
| l_in.setRandom(); |
| l_out = l_in.extract_image_patches(7, 7); |
| VERIFY_IS_EQUAL(l_out.dimension(0), 32); |
| VERIFY_IS_EQUAL(l_out.dimension(1), 7); |
| VERIFY_IS_EQUAL(l_out.dimension(2), 7); |
| VERIFY_IS_EQUAL(l_out.dimension(3), 16 * 16); |
| VERIFY_IS_EQUAL(l_out.dimension(4), 32); |
| |
| // RowMajor |
| l_out_row_major = l_in.swap_layout().extract_image_patches(7, 7); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 32); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 16 * 16); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 7); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 7); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 32); |
| |
| for (int b = 0; b < 32; ++b) { |
| for (int i = 0; i < 16; ++i) { |
| for (int j = 0; j < 16; ++j) { |
| int patchId = i + 16 * j; |
| for (int c = 0; c < 7; ++c) { |
| for (int r = 0; r < 7; ++r) { |
| for (int d = 0; d < 32; ++d) { |
| float expected = 0.0f; |
| if (r - 3 + i >= 0 && c - 3 + j >= 0 && r - 3 + i < 16 && c - 3 + j < 16) { |
| expected = l_in(d, r - 3 + i, c - 3 + j, b); |
| } |
| // ColMajor |
| if (l_out(d, r, c, patchId, b) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); |
| // RowMajor |
| if (l_out_row_major(b, patchId, c, r, d) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // ColMajor |
| l_in.resize(64, 13, 13, 32); |
| l_in.setRandom(); |
| l_out = l_in.extract_image_patches(3, 3); |
| VERIFY_IS_EQUAL(l_out.dimension(0), 64); |
| VERIFY_IS_EQUAL(l_out.dimension(1), 3); |
| VERIFY_IS_EQUAL(l_out.dimension(2), 3); |
| VERIFY_IS_EQUAL(l_out.dimension(3), 13 * 13); |
| VERIFY_IS_EQUAL(l_out.dimension(4), 32); |
| |
| // RowMajor |
| l_out_row_major = l_in.swap_layout().extract_image_patches(3, 3); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 32); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 13 * 13); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 3); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 3); |
| VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 64); |
| |
| for (int b = 0; b < 32; ++b) { |
| for (int i = 0; i < 13; ++i) { |
| for (int j = 0; j < 13; ++j) { |
| int patchId = i + 13 * j; |
| for (int c = 0; c < 3; ++c) { |
| for (int r = 0; r < 3; ++r) { |
| for (int d = 0; d < 64; ++d) { |
| float expected = 0.0f; |
| if (r - 1 + i >= 0 && c - 1 + j >= 0 && r - 1 + i < 13 && c - 1 + j < 13) { |
| expected = l_in(d, r - 1 + i, c - 1 + j, b); |
| } |
| // ColMajor |
| if (l_out(d, r, c, patchId, b) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); |
| // RowMajor |
| if (l_out_row_major(b, patchId, c, r, d) != expected) { |
| std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c |
| << " d=" << d << " b=" << b << std::endl; |
| } |
| VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_image_patch) { |
| CALL_SUBTEST_1(test_simple_patch()); |
| CALL_SUBTEST_2(test_patch_no_extra_dim()); |
| CALL_SUBTEST_3(test_patch_padding_valid()); |
| CALL_SUBTEST_4(test_patch_padding_valid_same_value()); |
| CALL_SUBTEST_5(test_patch_padding_same()); |
| CALL_SUBTEST_6(test_imagenet_patches()); |
| CALL_SUBTEST_7(test_patch_padding_same_negative_padding_clip_to_zero()); |
| } |