| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::array; |
| using Eigen::SyclDevice; |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_simple_padding(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 5; |
| IndexType sizeDim4 = 7; |
| array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; |
| |
| Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange); |
| tensor.setRandom(); |
| |
| array<std::pair<IndexType, IndexType>, 4> paddings; |
| paddings[0] = std::make_pair(0, 0); |
| paddings[1] = std::make_pair(2, 1); |
| paddings[2] = std::make_pair(3, 4); |
| paddings[3] = std::make_pair(0, 0); |
| |
| IndexType padedSizeDim1 = 2; |
| IndexType padedSizeDim2 = 6; |
| IndexType padedSizeDim3 = 12; |
| IndexType padedSizeDim4 = 7; |
| array<IndexType, 4> padedtensorRange = {{padedSizeDim1, padedSizeDim2, padedSizeDim3, padedSizeDim4}}; |
| |
| Tensor<DataType, 4, DataLayout, IndexType> padded(padedtensorRange); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size() * sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(padded.size() * sizeof(DataType))); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu2(gpu_data2, padedtensorRange); |
| |
| VERIFY_IS_EQUAL(padded.dimension(0), 2 + 0); |
| VERIFY_IS_EQUAL(padded.dimension(1), 3 + 3); |
| VERIFY_IS_EQUAL(padded.dimension(2), 5 + 7); |
| VERIFY_IS_EQUAL(padded.dimension(3), 7 + 0); |
| sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(), (tensor.size()) * sizeof(DataType)); |
| gpu2.device(sycl_device) = gpu1.pad(paddings); |
| sycl_device.memcpyDeviceToHost(padded.data(), gpu_data2, (padded.size()) * sizeof(DataType)); |
| for (IndexType i = 0; i < padedSizeDim1; ++i) { |
| for (IndexType j = 0; j < padedSizeDim2; ++j) { |
| for (IndexType k = 0; k < padedSizeDim3; ++k) { |
| for (IndexType l = 0; l < padedSizeDim4; ++l) { |
| if (j >= 2 && j < 5 && k >= 3 && k < 8) { |
| VERIFY_IS_EQUAL(padded(i, j, k, l), tensor(i, j - 2, k - 3, l)); |
| } else { |
| VERIFY_IS_EQUAL(padded(i, j, k, l), 0.0f); |
| } |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_padded_expr(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 5; |
| IndexType sizeDim4 = 7; |
| array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; |
| |
| Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange); |
| tensor.setRandom(); |
| |
| array<std::pair<IndexType, IndexType>, 4> paddings; |
| paddings[0] = std::make_pair(0, 0); |
| paddings[1] = std::make_pair(2, 1); |
| paddings[2] = std::make_pair(3, 4); |
| paddings[3] = std::make_pair(0, 0); |
| |
| Eigen::DSizes<IndexType, 2> reshape_dims; |
| reshape_dims[0] = 12; |
| reshape_dims[1] = 84; |
| |
| Tensor<DataType, 2, DataLayout, IndexType> result(reshape_dims); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size() * sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(result.size() * sizeof(DataType))); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); |
| TensorMap<Tensor<DataType, 2, DataLayout, IndexType>> gpu2(gpu_data2, reshape_dims); |
| |
| sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(), (tensor.size()) * sizeof(DataType)); |
| gpu2.device(sycl_device) = gpu1.pad(paddings).reshape(reshape_dims); |
| sycl_device.memcpyDeviceToHost(result.data(), gpu_data2, (result.size()) * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < 2; ++i) { |
| for (IndexType j = 0; j < 6; ++j) { |
| for (IndexType k = 0; k < 12; ++k) { |
| for (IndexType l = 0; l < 7; ++l) { |
| const float result_value = |
| DataLayout == ColMajor ? result(i + 2 * j, k + 12 * l) : result(j + 6 * i, l + 7 * k); |
| if (j >= 2 && j < 5 && k >= 3 && k < 8) { |
| VERIFY_IS_EQUAL(result_value, tensor(i, j - 2, k - 3, l)); |
| } else { |
| VERIFY_IS_EQUAL(result_value, 0.0f); |
| } |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| } |
| |
| template <typename DataType, typename dev_Selector> |
| void sycl_padding_test_per_device(dev_Selector s) { |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_simple_padding<DataType, RowMajor, int64_t>(sycl_device); |
| test_simple_padding<DataType, ColMajor, int64_t>(sycl_device); |
| test_padded_expr<DataType, RowMajor, int64_t>(sycl_device); |
| test_padded_expr<DataType, ColMajor, int64_t>(sycl_device); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_padding_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_padding_test_per_device<half>(device)); |
| CALL_SUBTEST(sycl_padding_test_per_device<float>(device)); |
| } |
| } |