blob: ae4d98a20b40d530cc4d932942b791dd2a7e3feb [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;
template <typename DataType, int DataLayout, typename IndexType>
static void test_simple_padding(const Eigen::SyclDevice& sycl_device) {
IndexType sizeDim1 = 2;
IndexType sizeDim2 = 3;
IndexType sizeDim3 = 5;
IndexType sizeDim4 = 7;
array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
tensor.setRandom();
array<std::pair<IndexType, IndexType>, 4> paddings;
paddings[0] = std::make_pair(0, 0);
paddings[1] = std::make_pair(2, 1);
paddings[2] = std::make_pair(3, 4);
paddings[3] = std::make_pair(0, 0);
IndexType padedSizeDim1 = 2;
IndexType padedSizeDim2 = 6;
IndexType padedSizeDim3 = 12;
IndexType padedSizeDim4 = 7;
array<IndexType, 4> padedtensorRange = {{padedSizeDim1, padedSizeDim2, padedSizeDim3, padedSizeDim4}};
Tensor<DataType, 4, DataLayout, IndexType> padded(padedtensorRange);
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size() * sizeof(DataType)));
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(padded.size() * sizeof(DataType)));
TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu2(gpu_data2, padedtensorRange);
VERIFY_IS_EQUAL(padded.dimension(0), 2 + 0);
VERIFY_IS_EQUAL(padded.dimension(1), 3 + 3);
VERIFY_IS_EQUAL(padded.dimension(2), 5 + 7);
VERIFY_IS_EQUAL(padded.dimension(3), 7 + 0);
sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(), (tensor.size()) * sizeof(DataType));
gpu2.device(sycl_device) = gpu1.pad(paddings);
sycl_device.memcpyDeviceToHost(padded.data(), gpu_data2, (padded.size()) * sizeof(DataType));
for (IndexType i = 0; i < padedSizeDim1; ++i) {
for (IndexType j = 0; j < padedSizeDim2; ++j) {
for (IndexType k = 0; k < padedSizeDim3; ++k) {
for (IndexType l = 0; l < padedSizeDim4; ++l) {
if (j >= 2 && j < 5 && k >= 3 && k < 8) {
VERIFY_IS_EQUAL(padded(i, j, k, l), tensor(i, j - 2, k - 3, l));
} else {
VERIFY_IS_EQUAL(padded(i, j, k, l), 0.0f);
}
}
}
}
}
sycl_device.deallocate(gpu_data1);
sycl_device.deallocate(gpu_data2);
}
template <typename DataType, int DataLayout, typename IndexType>
static void test_padded_expr(const Eigen::SyclDevice& sycl_device) {
IndexType sizeDim1 = 2;
IndexType sizeDim2 = 3;
IndexType sizeDim3 = 5;
IndexType sizeDim4 = 7;
array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
tensor.setRandom();
array<std::pair<IndexType, IndexType>, 4> paddings;
paddings[0] = std::make_pair(0, 0);
paddings[1] = std::make_pair(2, 1);
paddings[2] = std::make_pair(3, 4);
paddings[3] = std::make_pair(0, 0);
Eigen::DSizes<IndexType, 2> reshape_dims;
reshape_dims[0] = 12;
reshape_dims[1] = 84;
Tensor<DataType, 2, DataLayout, IndexType> result(reshape_dims);
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size() * sizeof(DataType)));
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(result.size() * sizeof(DataType)));
TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
TensorMap<Tensor<DataType, 2, DataLayout, IndexType>> gpu2(gpu_data2, reshape_dims);
sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(), (tensor.size()) * sizeof(DataType));
gpu2.device(sycl_device) = gpu1.pad(paddings).reshape(reshape_dims);
sycl_device.memcpyDeviceToHost(result.data(), gpu_data2, (result.size()) * sizeof(DataType));
for (IndexType i = 0; i < 2; ++i) {
for (IndexType j = 0; j < 6; ++j) {
for (IndexType k = 0; k < 12; ++k) {
for (IndexType l = 0; l < 7; ++l) {
const float result_value =
DataLayout == ColMajor ? result(i + 2 * j, k + 12 * l) : result(j + 6 * i, l + 7 * k);
if (j >= 2 && j < 5 && k >= 3 && k < 8) {
VERIFY_IS_EQUAL(result_value, tensor(i, j - 2, k - 3, l));
} else {
VERIFY_IS_EQUAL(result_value, 0.0f);
}
}
}
}
}
sycl_device.deallocate(gpu_data1);
sycl_device.deallocate(gpu_data2);
}
template <typename DataType, typename dev_Selector>
void sycl_padding_test_per_device(dev_Selector s) {
QueueInterface queueInterface(s);
auto sycl_device = Eigen::SyclDevice(&queueInterface);
test_simple_padding<DataType, RowMajor, int64_t>(sycl_device);
test_simple_padding<DataType, ColMajor, int64_t>(sycl_device);
test_padded_expr<DataType, RowMajor, int64_t>(sycl_device);
test_padded_expr<DataType, ColMajor, int64_t>(sycl_device);
}
EIGEN_DECLARE_TEST(cxx11_tensor_padding_sycl) {
for (const auto& device : Eigen::get_sycl_supported_devices()) {
CALL_SUBTEST(sycl_padding_test_per_device<half>(device));
CALL_SUBTEST(sycl_padding_test_per_device<float>(device));
}
}