blob: fa8da7d98a587406d5fbb4eec30c385f6d03c2a7 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <Eigen/CXX11/Tensor>
#include <Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
void test_gpu_random_uniform() {
Tensor<float, 2> out(72, 97);
out.setZero();
std::size_t out_bytes = out.size() * sizeof(float);
float* d_out;
gpuMalloc((void**)(&d_out), out_bytes);
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72, 97);
gpu_out.device(gpu_device) = gpu_out.random();
assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
// For now we just check this code doesn't crash.
// TODO: come up with a valid test of randomness
}
void test_gpu_random_normal() {
Tensor<float, 2> out(72, 97);
out.setZero();
std::size_t out_bytes = out.size() * sizeof(float);
float* d_out;
gpuMalloc((void**)(&d_out), out_bytes);
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72, 97);
Eigen::internal::NormalRandomGenerator<float> gen(true);
gpu_out.device(gpu_device) = gpu_out.random(gen);
assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
}
static void test_complex() {
Tensor<std::complex<float>, 1> vec(6);
vec.setRandom();
// Fixme: we should check that the generated numbers follow a uniform
// distribution instead.
for (int i = 1; i < 6; ++i) {
VERIFY_IS_NOT_EQUAL(vec(i), vec(i - 1));
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_random_gpu) {
CALL_SUBTEST(test_gpu_random_uniform());
CALL_SUBTEST(test_gpu_random_normal());
CALL_SUBTEST(test_complex());
}