| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <limits> |
| #include <numeric> |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| template <int DataLayout> |
| static void test_trivial_reductions() { |
| { |
| Tensor<float, 0, DataLayout> tensor; |
| tensor.setRandom(); |
| array<ptrdiff_t, 0> reduction_axis; |
| |
| Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); |
| VERIFY_IS_EQUAL(result(), tensor()); |
| } |
| |
| { |
| Tensor<float, 1, DataLayout> tensor(7); |
| tensor.setRandom(); |
| array<ptrdiff_t, 0> reduction_axis; |
| |
| Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis); |
| VERIFY_IS_EQUAL(result.dimension(0), 7); |
| for (int i = 0; i < 7; ++i) { |
| VERIFY_IS_EQUAL(result(i), tensor(i)); |
| } |
| } |
| |
| { |
| Tensor<float, 2, DataLayout> tensor(2, 3); |
| tensor.setRandom(); |
| array<ptrdiff_t, 0> reduction_axis; |
| |
| Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis); |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_EQUAL(result.dimension(1), 3); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| VERIFY_IS_EQUAL(result(i, j), tensor(i, j)); |
| } |
| } |
| } |
| } |
| |
| template <typename Scalar, int DataLayout> |
| static void test_simple_reductions() { |
| Tensor<Scalar, 4, DataLayout> tensor(2, 3, 5, 7); |
| tensor.setRandom(); |
| // Add a little offset so that the product reductions won't be close to zero. |
| tensor += tensor.constant(Scalar(0.5f)); |
| array<ptrdiff_t, 2> reduction_axis2; |
| reduction_axis2[0] = 1; |
| reduction_axis2[1] = 3; |
| |
| Tensor<Scalar, 2, DataLayout> result = tensor.sum(reduction_axis2); |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_EQUAL(result.dimension(1), 5); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| Scalar sum = Scalar(0.0f); |
| for (int k = 0; k < 3; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| sum += tensor(i, k, j, l); |
| } |
| } |
| VERIFY_IS_APPROX(result(i, j), sum); |
| } |
| } |
| |
| { |
| Tensor<Scalar, 0, DataLayout> sum1 = tensor.sum(); |
| VERIFY_IS_EQUAL(sum1.rank(), 0); |
| |
| array<ptrdiff_t, 4> reduction_axis4; |
| reduction_axis4[0] = 0; |
| reduction_axis4[1] = 1; |
| reduction_axis4[2] = 2; |
| reduction_axis4[3] = 3; |
| Tensor<Scalar, 0, DataLayout> sum2 = tensor.sum(reduction_axis4); |
| VERIFY_IS_EQUAL(sum2.rank(), 0); |
| |
| VERIFY_IS_APPROX(sum1(), sum2()); |
| } |
| |
| reduction_axis2[0] = 0; |
| reduction_axis2[1] = 2; |
| result = tensor.prod(reduction_axis2); |
| VERIFY_IS_EQUAL(result.dimension(0), 3); |
| VERIFY_IS_EQUAL(result.dimension(1), 7); |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 7; ++j) { |
| Scalar prod = Scalar(1.0f); |
| for (int k = 0; k < 2; ++k) { |
| for (int l = 0; l < 5; ++l) { |
| prod *= tensor(k, i, l, j); |
| } |
| } |
| VERIFY_IS_APPROX(result(i, j), prod); |
| } |
| } |
| |
| { |
| Tensor<Scalar, 0, DataLayout> prod1 = tensor.prod(); |
| VERIFY_IS_EQUAL(prod1.rank(), 0); |
| |
| array<ptrdiff_t, 4> reduction_axis4; |
| reduction_axis4[0] = 0; |
| reduction_axis4[1] = 1; |
| reduction_axis4[2] = 2; |
| reduction_axis4[3] = 3; |
| Tensor<Scalar, 0, DataLayout> prod2 = tensor.prod(reduction_axis4); |
| VERIFY_IS_EQUAL(prod2.rank(), 0); |
| |
| VERIFY_IS_APPROX(prod1(), prod2()); |
| } |
| |
| reduction_axis2[0] = 0; |
| reduction_axis2[1] = 2; |
| result = tensor.maximum(reduction_axis2); |
| VERIFY_IS_EQUAL(result.dimension(0), 3); |
| VERIFY_IS_EQUAL(result.dimension(1), 7); |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 7; ++j) { |
| Scalar max_val = std::numeric_limits<Scalar>::lowest(); |
| for (int k = 0; k < 2; ++k) { |
| for (int l = 0; l < 5; ++l) { |
| max_val = (std::max)(max_val, tensor(k, i, l, j)); |
| } |
| } |
| VERIFY_IS_APPROX(result(i, j), max_val); |
| } |
| } |
| |
| { |
| Tensor<Scalar, 0, DataLayout> max1 = tensor.maximum(); |
| VERIFY_IS_EQUAL(max1.rank(), 0); |
| |
| array<ptrdiff_t, 4> reduction_axis4; |
| reduction_axis4[0] = 0; |
| reduction_axis4[1] = 1; |
| reduction_axis4[2] = 2; |
| reduction_axis4[3] = 3; |
| Tensor<Scalar, 0, DataLayout> max2 = tensor.maximum(reduction_axis4); |
| VERIFY_IS_EQUAL(max2.rank(), 0); |
| |
| VERIFY_IS_APPROX(max1(), max2()); |
| } |
| |
| reduction_axis2[0] = 0; |
| reduction_axis2[1] = 1; |
| result = tensor.minimum(reduction_axis2); |
| VERIFY_IS_EQUAL(result.dimension(0), 5); |
| VERIFY_IS_EQUAL(result.dimension(1), 7); |
| for (int i = 0; i < 5; ++i) { |
| for (int j = 0; j < 7; ++j) { |
| Scalar min_val = (std::numeric_limits<Scalar>::max)(); |
| for (int k = 0; k < 2; ++k) { |
| for (int l = 0; l < 3; ++l) { |
| min_val = (std::min)(min_val, tensor(k, l, i, j)); |
| } |
| } |
| VERIFY_IS_APPROX(result(i, j), min_val); |
| } |
| } |
| |
| { |
| Tensor<Scalar, 0, DataLayout> min1 = tensor.minimum(); |
| VERIFY_IS_EQUAL(min1.rank(), 0); |
| |
| array<ptrdiff_t, 4> reduction_axis4; |
| reduction_axis4[0] = 0; |
| reduction_axis4[1] = 1; |
| reduction_axis4[2] = 2; |
| reduction_axis4[3] = 3; |
| Tensor<Scalar, 0, DataLayout> min2 = tensor.minimum(reduction_axis4); |
| VERIFY_IS_EQUAL(min2.rank(), 0); |
| |
| VERIFY_IS_APPROX(min1(), min2()); |
| } |
| |
| reduction_axis2[0] = 0; |
| reduction_axis2[1] = 1; |
| result = tensor.mean(reduction_axis2); |
| VERIFY_IS_EQUAL(result.dimension(0), 5); |
| VERIFY_IS_EQUAL(result.dimension(1), 7); |
| for (int i = 0; i < 5; ++i) { |
| for (int j = 0; j < 7; ++j) { |
| Scalar sum = Scalar(0.0f); |
| int count = 0; |
| for (int k = 0; k < 2; ++k) { |
| for (int l = 0; l < 3; ++l) { |
| sum += tensor(k, l, i, j); |
| ++count; |
| } |
| } |
| VERIFY_IS_APPROX(result(i, j), sum / Scalar(count)); |
| } |
| } |
| |
| { |
| Tensor<Scalar, 0, DataLayout> mean1 = tensor.mean(); |
| VERIFY_IS_EQUAL(mean1.rank(), 0); |
| |
| array<ptrdiff_t, 4> reduction_axis4; |
| reduction_axis4[0] = 0; |
| reduction_axis4[1] = 1; |
| reduction_axis4[2] = 2; |
| reduction_axis4[3] = 3; |
| Tensor<Scalar, 0, DataLayout> mean2 = tensor.mean(reduction_axis4); |
| VERIFY_IS_EQUAL(mean2.rank(), 0); |
| |
| VERIFY_IS_APPROX(mean1(), mean2()); |
| } |
| |
| { |
| Tensor<int, 1> ints(10); |
| std::iota(ints.data(), ints.data() + ints.dimension(0), 0); |
| |
| TensorFixedSize<bool, Sizes<>> all_; |
| all_ = ints.all(); |
| VERIFY(!all_()); |
| all_ = (ints >= ints.constant(0)).all(); |
| VERIFY(all_()); |
| |
| TensorFixedSize<bool, Sizes<>> any; |
| any = (ints > ints.constant(10)).any(); |
| VERIFY(!any()); |
| any = (ints < ints.constant(1)).any(); |
| VERIFY(any()); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_reductions_in_expr() { |
| Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7); |
| tensor.setRandom(); |
| array<ptrdiff_t, 2> reduction_axis2; |
| reduction_axis2[0] = 1; |
| reduction_axis2[1] = 3; |
| |
| Tensor<float, 2, DataLayout> result(2, 5); |
| result = result.constant(1.0f) - tensor.sum(reduction_axis2); |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_EQUAL(result.dimension(1), 5); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| float sum = 0.0f; |
| for (int k = 0; k < 3; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| sum += tensor(i, k, j, l); |
| } |
| } |
| VERIFY_IS_APPROX(result(i, j), 1.0f - sum); |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_full_reductions() { |
| Tensor<float, 2, DataLayout> tensor(2, 3); |
| tensor.setRandom(); |
| array<ptrdiff_t, 2> reduction_axis; |
| reduction_axis[0] = 0; |
| reduction_axis[1] = 1; |
| |
| Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); |
| VERIFY_IS_EQUAL(result.rank(), 0); |
| |
| float sum = 0.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| sum += tensor(i, j); |
| } |
| } |
| VERIFY_IS_APPROX(result(0), sum); |
| |
| result = tensor.square().sum(reduction_axis).sqrt(); |
| VERIFY_IS_EQUAL(result.rank(), 0); |
| |
| sum = 0.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| sum += tensor(i, j) * tensor(i, j); |
| } |
| } |
| VERIFY_IS_APPROX(result(), sqrtf(sum)); |
| } |
| |
| struct UserReducer { |
| static const bool PacketAccess = false; |
| UserReducer(float offset) : offset_(offset) {} |
| void reduce(const float val, float* accum) { *accum += val * val; } |
| float initialize() const { return 0; } |
| float finalize(const float accum) const { return 1.0f / (accum + offset_); } |
| |
| private: |
| const float offset_; |
| }; |
| |
| template <int DataLayout> |
| static void test_user_defined_reductions() { |
| Tensor<float, 2, DataLayout> tensor(5, 7); |
| tensor.setRandom(); |
| array<ptrdiff_t, 1> reduction_axis; |
| reduction_axis[0] = 1; |
| |
| UserReducer reducer(10.0f); |
| Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer); |
| VERIFY_IS_EQUAL(result.dimension(0), 5); |
| for (int i = 0; i < 5; ++i) { |
| float expected = 10.0f; |
| for (int j = 0; j < 7; ++j) { |
| expected += tensor(i, j) * tensor(i, j); |
| } |
| expected = 1.0f / expected; |
| VERIFY_IS_APPROX(result(i), expected); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_tensor_maps() { |
| int inputs[2 * 3 * 5 * 7]; |
| TensorMap<Tensor<int, 4, DataLayout>> tensor_map(inputs, 2, 3, 5, 7); |
| TensorMap<Tensor<const int, 4, DataLayout>> tensor_map_const(inputs, 2, 3, 5, 7); |
| const TensorMap<Tensor<const int, 4, DataLayout>> tensor_map_const_const(inputs, 2, 3, 5, 7); |
| |
| tensor_map.setRandom(); |
| array<ptrdiff_t, 2> reduction_axis; |
| reduction_axis[0] = 1; |
| reduction_axis[1] = 3; |
| |
| Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis); |
| Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis); |
| Tensor<int, 2, DataLayout> result3 = tensor_map_const_const.sum(reduction_axis); |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| int sum = 0; |
| for (int k = 0; k < 3; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| sum += tensor_map(i, k, j, l); |
| } |
| } |
| VERIFY_IS_EQUAL(result(i, j), sum); |
| VERIFY_IS_EQUAL(result2(i, j), sum); |
| VERIFY_IS_EQUAL(result3(i, j), sum); |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_static_dims() { |
| Tensor<float, 4, DataLayout> in(72, 53, 97, 113); |
| Tensor<float, 2, DataLayout> out(72, 97); |
| in.setRandom(); |
| |
| Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3>> reduction_axis; |
| |
| out = in.maximum(reduction_axis); |
| |
| for (int i = 0; i < 72; ++i) { |
| for (int j = 0; j < 97; ++j) { |
| float expected = -1e10f; |
| for (int k = 0; k < 53; ++k) { |
| for (int l = 0; l < 113; ++l) { |
| expected = (std::max)(expected, in(i, k, j, l)); |
| } |
| } |
| VERIFY_IS_EQUAL(out(i, j), expected); |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_innermost_last_dims() { |
| Tensor<float, 4, DataLayout> in(72, 53, 97, 113); |
| Tensor<float, 2, DataLayout> out(97, 113); |
| in.setRandom(); |
| |
| // Reduce on the innermost dimensions. |
| // This triggers the use of packets for ColMajor. |
| Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1>> reduction_axis; |
| |
| out = in.maximum(reduction_axis); |
| |
| for (int i = 0; i < 97; ++i) { |
| for (int j = 0; j < 113; ++j) { |
| float expected = -1e10f; |
| for (int k = 0; k < 53; ++k) { |
| for (int l = 0; l < 72; ++l) { |
| expected = (std::max)(expected, in(l, k, i, j)); |
| } |
| } |
| VERIFY_IS_EQUAL(out(i, j), expected); |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_innermost_first_dims() { |
| Tensor<float, 4, DataLayout> in(72, 53, 97, 113); |
| Tensor<float, 2, DataLayout> out(72, 53); |
| in.setRandom(); |
| |
| // Reduce on the innermost dimensions. |
| // This triggers the use of packets for RowMajor. |
| Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis; |
| |
| out = in.maximum(reduction_axis); |
| |
| for (int i = 0; i < 72; ++i) { |
| for (int j = 0; j < 53; ++j) { |
| float expected = -1e10f; |
| for (int k = 0; k < 97; ++k) { |
| for (int l = 0; l < 113; ++l) { |
| expected = (std::max)(expected, in(i, j, k, l)); |
| } |
| } |
| VERIFY_IS_EQUAL(out(i, j), expected); |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_reduce_middle_dims() { |
| Tensor<float, 4, DataLayout> in(72, 53, 97, 113); |
| Tensor<float, 2, DataLayout> out(72, 53); |
| in.setRandom(); |
| |
| // Reduce on the innermost dimensions. |
| // This triggers the use of packets for RowMajor. |
| Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis; |
| |
| out = in.maximum(reduction_axis); |
| |
| for (int i = 0; i < 72; ++i) { |
| for (int j = 0; j < 113; ++j) { |
| float expected = -1e10f; |
| for (int k = 0; k < 53; ++k) { |
| for (int l = 0; l < 97; ++l) { |
| expected = (std::max)(expected, in(i, k, l, j)); |
| } |
| } |
| VERIFY_IS_EQUAL(out(i, j), expected); |
| } |
| } |
| } |
| |
| template <typename ScalarType, int num_elements, int max_mean> |
| void test_sum_accuracy() { |
| Tensor<double, 1> double_tensor(num_elements); |
| Tensor<ScalarType, 1> tensor(num_elements); |
| for (double prescribed_mean = 0; prescribed_mean <= max_mean; |
| prescribed_mean = numext::maxi(1.0, prescribed_mean * 3.99)) { |
| // FIXME: NormalRandomGenerator doesn't work in bfloat and half. |
| double_tensor.setRandom<Eigen::internal::NormalRandomGenerator<double>>(); |
| double_tensor += double_tensor.constant(prescribed_mean); |
| tensor = double_tensor.cast<ScalarType>(); |
| |
| Tensor<ScalarType, 0> sum; |
| sum = tensor.sum(); |
| |
| // Compute the reference value in double precsion. |
| double expected_sum = 0.0; |
| double abs_sum = 0.0; |
| for (int i = 0; i < num_elements; ++i) { |
| expected_sum += static_cast<double>(tensor(i)); |
| abs_sum += static_cast<double>(numext::abs(tensor(i))); |
| } |
| // Test against probabilistic forward error bound. In reality, the error is much smaller |
| // when we use tree summation. |
| double err = Eigen::numext::abs(static_cast<double>(sum()) - expected_sum); |
| double tol = numext::sqrt(static_cast<double>(num_elements)) * |
| static_cast<double>(NumTraits<ScalarType>::epsilon()) * abs_sum; |
| VERIFY_LE(err, tol); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_reduction) { |
| CALL_SUBTEST(test_trivial_reductions<ColMajor>()); |
| CALL_SUBTEST(test_trivial_reductions<RowMajor>()); |
| CALL_SUBTEST((test_simple_reductions<float, ColMajor>())); |
| CALL_SUBTEST((test_simple_reductions<float, RowMajor>())); |
| CALL_SUBTEST((test_simple_reductions<Eigen::half, ColMajor>())); |
| CALL_SUBTEST((test_simple_reductions<Eigen::bfloat16, ColMajor>())); |
| CALL_SUBTEST(test_reductions_in_expr<ColMajor>()); |
| CALL_SUBTEST(test_reductions_in_expr<RowMajor>()); |
| CALL_SUBTEST(test_full_reductions<ColMajor>()); |
| CALL_SUBTEST(test_full_reductions<RowMajor>()); |
| CALL_SUBTEST(test_user_defined_reductions<ColMajor>()); |
| CALL_SUBTEST(test_user_defined_reductions<RowMajor>()); |
| CALL_SUBTEST(test_tensor_maps<ColMajor>()); |
| CALL_SUBTEST(test_tensor_maps<RowMajor>()); |
| CALL_SUBTEST(test_static_dims<ColMajor>()); |
| CALL_SUBTEST(test_static_dims<RowMajor>()); |
| CALL_SUBTEST(test_innermost_last_dims<ColMajor>()); |
| CALL_SUBTEST(test_innermost_last_dims<RowMajor>()); |
| CALL_SUBTEST(test_innermost_first_dims<ColMajor>()); |
| CALL_SUBTEST(test_innermost_first_dims<RowMajor>()); |
| CALL_SUBTEST(test_reduce_middle_dims<ColMajor>()); |
| CALL_SUBTEST(test_reduce_middle_dims<RowMajor>()); |
| CALL_SUBTEST((test_sum_accuracy<float, 10 * 1024 * 1024, 8 * 1024>())); |
| CALL_SUBTEST((test_sum_accuracy<Eigen::bfloat16, 10 * 1024 * 1024, 8 * 1024>())); |
| // The range of half is limited to 65519 when using round-to-even, |
| // so we are severely limited in the size and mean of the tensors |
| // we can reduce without overflow. |
| CALL_SUBTEST((test_sum_accuracy<Eigen::half, 4 * 1024, 16>())); |
| CALL_SUBTEST((test_sum_accuracy<Eigen::half, 10 * 1024 * 1024, 0>())); |
| } |