| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_simple_reverse(const Eigen::SyclDevice& sycl_device) { |
| IndexType dim1 = 2; |
| IndexType dim2 = 3; |
| IndexType dim3 = 5; |
| IndexType dim4 = 7; |
| |
| array<IndexType, 4> tensorRange = {{dim1, dim2, dim3, dim4}}; |
| Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange); |
| Tensor<DataType, 4, DataLayout, IndexType> reversed_tensor(tensorRange); |
| tensor.setRandom(); |
| |
| array<bool, 4> dim_rev; |
| dim_rev[0] = false; |
| dim_rev[1] = true; |
| dim_rev[2] = true; |
| dim_rev[3] = false; |
| |
| DataType* gpu_in_data = |
| static_cast<DataType*>(sycl_device.allocate(tensor.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_out_data = |
| static_cast<DataType*>(sycl_device.allocate(reversed_tensor.dimensions().TotalSize() * sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > in_gpu(gpu_in_data, tensorRange); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu(gpu_out_data, tensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_in_data, tensor.data(), (tensor.dimensions().TotalSize()) * sizeof(DataType)); |
| out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev); |
| sycl_device.memcpyDeviceToHost(reversed_tensor.data(), gpu_out_data, |
| reversed_tensor.dimensions().TotalSize() * sizeof(DataType)); |
| // Check that the CPU and GPU reductions return the same result. |
| for (IndexType i = 0; i < 2; ++i) { |
| for (IndexType j = 0; j < 3; ++j) { |
| for (IndexType k = 0; k < 5; ++k) { |
| for (IndexType l = 0; l < 7; ++l) { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l), reversed_tensor(i, 2 - j, 4 - k, l)); |
| } |
| } |
| } |
| } |
| dim_rev[0] = true; |
| dim_rev[1] = false; |
| dim_rev[2] = false; |
| dim_rev[3] = false; |
| |
| out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev); |
| sycl_device.memcpyDeviceToHost(reversed_tensor.data(), gpu_out_data, |
| reversed_tensor.dimensions().TotalSize() * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < 2; ++i) { |
| for (IndexType j = 0; j < 3; ++j) { |
| for (IndexType k = 0; k < 5; ++k) { |
| for (IndexType l = 0; l < 7; ++l) { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l), reversed_tensor(1 - i, j, k, l)); |
| } |
| } |
| } |
| } |
| |
| dim_rev[0] = true; |
| dim_rev[1] = false; |
| dim_rev[2] = false; |
| dim_rev[3] = true; |
| out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev); |
| sycl_device.memcpyDeviceToHost(reversed_tensor.data(), gpu_out_data, |
| reversed_tensor.dimensions().TotalSize() * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < 2; ++i) { |
| for (IndexType j = 0; j < 3; ++j) { |
| for (IndexType k = 0; k < 5; ++k) { |
| for (IndexType l = 0; l < 7; ++l) { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l), reversed_tensor(1 - i, j, k, 6 - l)); |
| } |
| } |
| } |
| } |
| |
| sycl_device.deallocate(gpu_in_data); |
| sycl_device.deallocate(gpu_out_data); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_expr_reverse(const Eigen::SyclDevice& sycl_device, bool LValue) { |
| IndexType dim1 = 2; |
| IndexType dim2 = 3; |
| IndexType dim3 = 5; |
| IndexType dim4 = 7; |
| |
| array<IndexType, 4> tensorRange = {{dim1, dim2, dim3, dim4}}; |
| Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange); |
| Tensor<DataType, 4, DataLayout, IndexType> expected(tensorRange); |
| Tensor<DataType, 4, DataLayout, IndexType> result(tensorRange); |
| tensor.setRandom(); |
| |
| array<bool, 4> dim_rev; |
| dim_rev[0] = false; |
| dim_rev[1] = true; |
| dim_rev[2] = false; |
| dim_rev[3] = true; |
| |
| DataType* gpu_in_data = |
| static_cast<DataType*>(sycl_device.allocate(tensor.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_out_data_expected = |
| static_cast<DataType*>(sycl_device.allocate(expected.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_out_data_result = |
| static_cast<DataType*>(sycl_device.allocate(result.dimensions().TotalSize() * sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > in_gpu(gpu_in_data, tensorRange); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu_expected(gpu_out_data_expected, tensorRange); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu_result(gpu_out_data_result, tensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_in_data, tensor.data(), (tensor.dimensions().TotalSize()) * sizeof(DataType)); |
| |
| if (LValue) { |
| out_gpu_expected.reverse(dim_rev).device(sycl_device) = in_gpu; |
| } else { |
| out_gpu_expected.device(sycl_device) = in_gpu.reverse(dim_rev); |
| } |
| sycl_device.memcpyDeviceToHost(expected.data(), gpu_out_data_expected, |
| expected.dimensions().TotalSize() * sizeof(DataType)); |
| |
| array<IndexType, 4> src_slice_dim; |
| src_slice_dim[0] = 2; |
| src_slice_dim[1] = 3; |
| src_slice_dim[2] = 1; |
| src_slice_dim[3] = 7; |
| array<IndexType, 4> src_slice_start; |
| src_slice_start[0] = 0; |
| src_slice_start[1] = 0; |
| src_slice_start[2] = 0; |
| src_slice_start[3] = 0; |
| array<IndexType, 4> dst_slice_dim = src_slice_dim; |
| array<IndexType, 4> dst_slice_start = src_slice_start; |
| |
| for (IndexType i = 0; i < 5; ++i) { |
| if (LValue) { |
| out_gpu_result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev).device(sycl_device) = |
| in_gpu.slice(src_slice_start, src_slice_dim); |
| } else { |
| out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) = |
| in_gpu.slice(src_slice_start, src_slice_dim).reverse(dim_rev); |
| } |
| src_slice_start[2] += 1; |
| dst_slice_start[2] += 1; |
| } |
| sycl_device.memcpyDeviceToHost(result.data(), gpu_out_data_result, |
| result.dimensions().TotalSize() * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < expected.dimension(0); ++i) { |
| for (IndexType j = 0; j < expected.dimension(1); ++j) { |
| for (IndexType k = 0; k < expected.dimension(2); ++k) { |
| for (IndexType l = 0; l < expected.dimension(3); ++l) { |
| VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l)); |
| } |
| } |
| } |
| } |
| |
| dst_slice_start[2] = 0; |
| result.setRandom(); |
| sycl_device.memcpyHostToDevice(gpu_out_data_result, result.data(), |
| (result.dimensions().TotalSize()) * sizeof(DataType)); |
| for (IndexType i = 0; i < 5; ++i) { |
| if (LValue) { |
| out_gpu_result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev).device(sycl_device) = |
| in_gpu.slice(dst_slice_start, dst_slice_dim); |
| } else { |
| out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) = |
| in_gpu.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim); |
| } |
| dst_slice_start[2] += 1; |
| } |
| sycl_device.memcpyDeviceToHost(result.data(), gpu_out_data_result, |
| result.dimensions().TotalSize() * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < expected.dimension(0); ++i) { |
| for (IndexType j = 0; j < expected.dimension(1); ++j) { |
| for (IndexType k = 0; k < expected.dimension(2); ++k) { |
| for (IndexType l = 0; l < expected.dimension(3); ++l) { |
| VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l)); |
| } |
| } |
| } |
| } |
| } |
| |
| template <typename DataType> |
| void sycl_reverse_test_per_device(const cl::sycl::device& d) { |
| QueueInterface queueInterface(d); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_simple_reverse<DataType, RowMajor, int64_t>(sycl_device); |
| test_simple_reverse<DataType, ColMajor, int64_t>(sycl_device); |
| test_expr_reverse<DataType, RowMajor, int64_t>(sycl_device, false); |
| test_expr_reverse<DataType, ColMajor, int64_t>(sycl_device, false); |
| test_expr_reverse<DataType, RowMajor, int64_t>(sycl_device, true); |
| test_expr_reverse<DataType, ColMajor, int64_t>(sycl_device, true); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_reverse_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| std::cout << "Running on " << device.get_info<cl::sycl::info::device::name>() << std::endl; |
| CALL_SUBTEST_1(sycl_reverse_test_per_device<short>(device)); |
| CALL_SUBTEST_2(sycl_reverse_test_per_device<int>(device)); |
| CALL_SUBTEST_3(sycl_reverse_test_per_device<unsigned int>(device)); |
| #ifdef EIGEN_SYCL_DOUBLE_SUPPORT |
| CALL_SUBTEST_4(sycl_reverse_test_per_device<double>(device)); |
| #endif |
| CALL_SUBTEST_5(sycl_reverse_test_per_device<half>(device)); |
| CALL_SUBTEST_6(sycl_reverse_test_per_device<float>(device)); |
| } |
| } |