| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| #define EIGEN_USE_GPU |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| #include <Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> |
| |
| using Eigen::Tensor; |
| typedef Tensor<float, 1>::DimensionPair DimPair; |
| |
| template <int DataLayout> |
| void test_gpu_cumsum(int m_size, int k_size, int n_size) { |
| std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; |
| Tensor<float, 3, DataLayout> t_input(m_size, k_size, n_size); |
| Tensor<float, 3, DataLayout> t_result(m_size, k_size, n_size); |
| Tensor<float, 3, DataLayout> t_result_gpu(m_size, k_size, n_size); |
| |
| t_input.setRandom(); |
| |
| std::size_t t_input_bytes = t_input.size() * sizeof(float); |
| std::size_t t_result_bytes = t_result.size() * sizeof(float); |
| |
| float* d_t_input; |
| float* d_t_result; |
| |
| gpuMalloc((void**)(&d_t_input), t_input_bytes); |
| gpuMalloc((void**)(&d_t_result), t_result_bytes); |
| |
| gpuMemcpy(d_t_input, t_input.data(), t_input_bytes, gpuMemcpyHostToDevice); |
| |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_t_input(d_t_input, |
| Eigen::array<int, 3>{m_size, k_size, n_size}); |
| Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_t_result(d_t_result, |
| Eigen::array<int, 3>{m_size, k_size, n_size}); |
| |
| gpu_t_result.device(gpu_device) = gpu_t_input.cumsum(1); |
| t_result = t_input.cumsum(1); |
| |
| gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost); |
| for (DenseIndex i = 0; i < t_result.size(); i++) { |
| if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) { |
| continue; |
| } |
| if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) { |
| continue; |
| } |
| std::cout << "mismatch detected at index " << i << ": " << t_result(i) << " vs " << t_result_gpu(i) << std::endl; |
| assert(false); |
| } |
| |
| gpuFree((void*)d_t_input); |
| gpuFree((void*)d_t_result); |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_scan_gpu) { |
| CALL_SUBTEST_1(test_gpu_cumsum<ColMajor>(128, 128, 128)); |
| CALL_SUBTEST_2(test_gpu_cumsum<RowMajor>(128, 128, 128)); |
| } |