blob: c9997adb440eee55ff7b30f27b2d7d52d85d8921 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
#include <Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
using Eigen::Tensor;
typedef Tensor<float, 1>::DimensionPair DimPair;
template <int DataLayout>
void test_gpu_cumsum(int m_size, int k_size, int n_size) {
std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
Tensor<float, 3, DataLayout> t_input(m_size, k_size, n_size);
Tensor<float, 3, DataLayout> t_result(m_size, k_size, n_size);
Tensor<float, 3, DataLayout> t_result_gpu(m_size, k_size, n_size);
t_input.setRandom();
std::size_t t_input_bytes = t_input.size() * sizeof(float);
std::size_t t_result_bytes = t_result.size() * sizeof(float);
float* d_t_input;
float* d_t_result;
gpuMalloc((void**)(&d_t_input), t_input_bytes);
gpuMalloc((void**)(&d_t_result), t_result_bytes);
gpuMemcpy(d_t_input, t_input.data(), t_input_bytes, gpuMemcpyHostToDevice);
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_t_input(d_t_input,
Eigen::array<int, 3>{m_size, k_size, n_size});
Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_t_result(d_t_result,
Eigen::array<int, 3>{m_size, k_size, n_size});
gpu_t_result.device(gpu_device) = gpu_t_input.cumsum(1);
t_result = t_input.cumsum(1);
gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost);
for (DenseIndex i = 0; i < t_result.size(); i++) {
if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) {
continue;
}
if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
continue;
}
std::cout << "mismatch detected at index " << i << ": " << t_result(i) << " vs " << t_result_gpu(i) << std::endl;
assert(false);
}
gpuFree((void*)d_t_input);
gpuFree((void*)d_t_result);
}
EIGEN_DECLARE_TEST(cxx11_tensor_scan_gpu) {
CALL_SUBTEST_1(test_gpu_cumsum<ColMajor>(128, 128, 128));
CALL_SUBTEST_2(test_gpu_cumsum<RowMajor>(128, 128, 128));
}