| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Dense> |
| |
| #define NUMBER_DIRECTIONS 16 |
| #include <unsupported/Eigen/AdolcForward> |
| |
| template <typename Vector> |
| EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p) { |
| typedef typename Vector::Scalar Scalar; |
| return (p - Vector(Scalar(-1), Scalar(1.))).norm() + (p.array().sqrt().abs() * p.array().sin()).sum() + p.dot(p); |
| } |
| |
| template <typename Scalar_, int NX = Dynamic, int NY = Dynamic> |
| struct TestFunc1 { |
| typedef Scalar_ Scalar; |
| enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY }; |
| typedef Matrix<Scalar, InputsAtCompileTime, 1> InputType; |
| typedef Matrix<Scalar, ValuesAtCompileTime, 1> ValueType; |
| typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; |
| |
| int m_inputs, m_values; |
| |
| TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} |
| TestFunc1(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {} |
| |
| int inputs() const { return m_inputs; } |
| int values() const { return m_values; } |
| |
| template <typename T> |
| void operator()(const Matrix<T, InputsAtCompileTime, 1>& x, Matrix<T, ValuesAtCompileTime, 1>* _v) const { |
| Matrix<T, ValuesAtCompileTime, 1>& v = *_v; |
| |
| v[0] = 2 * x[0] * x[0] + x[0] * x[1]; |
| v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; |
| if (inputs() > 2) { |
| v[0] += 0.5 * x[2]; |
| v[1] += x[2]; |
| } |
| if (values() > 2) { |
| v[2] = 3 * x[1] * x[0] * x[0]; |
| } |
| if (inputs() > 2 && values() > 2) v[2] *= x[2]; |
| } |
| |
| void operator()(const InputType& x, ValueType* v, JacobianType* _j) const { |
| (*this)(x, v); |
| |
| if (_j) { |
| JacobianType& j = *_j; |
| |
| j(0, 0) = 4 * x[0] + x[1]; |
| j(1, 0) = 3 * x[1]; |
| |
| j(0, 1) = x[0]; |
| j(1, 1) = 3 * x[0] + 2 * 0.5 * x[1]; |
| |
| if (inputs() > 2) { |
| j(0, 2) = 0.5; |
| j(1, 2) = 1; |
| } |
| if (values() > 2) { |
| j(2, 0) = 3 * x[1] * 2 * x[0]; |
| j(2, 1) = 3 * x[0] * x[0]; |
| } |
| if (inputs() > 2 && values() > 2) { |
| j(2, 0) *= x[2]; |
| j(2, 1) *= x[2]; |
| |
| j(2, 2) = 3 * x[1] * x[0] * x[0]; |
| j(2, 2) = 3 * x[1] * x[0] * x[0]; |
| } |
| } |
| } |
| }; |
| |
| template <typename Func> |
| void adolc_forward_jacobian(const Func& f) { |
| typename Func::InputType x = Func::InputType::Random(f.inputs()); |
| typename Func::ValueType y(f.values()), yref(f.values()); |
| typename Func::JacobianType j(f.values(), f.inputs()), jref(f.values(), f.inputs()); |
| |
| jref.setZero(); |
| yref.setZero(); |
| f(x, &yref, &jref); |
| // std::cerr << y.transpose() << "\n\n";; |
| // std::cerr << j << "\n\n";; |
| |
| j.setZero(); |
| y.setZero(); |
| AdolcForwardJacobian<Func> autoj(f); |
| autoj(x, &y, &j); |
| // std::cerr << y.transpose() << "\n\n";; |
| // std::cerr << j << "\n\n";; |
| |
| VERIFY_IS_APPROX(y, yref); |
| VERIFY_IS_APPROX(j, jref); |
| } |
| |
| EIGEN_DECLARE_TEST(forward_adolc) { |
| adtl::setNumDir(NUMBER_DIRECTIONS); |
| |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST((adolc_forward_jacobian(TestFunc1<double, 2, 2>()))); |
| CALL_SUBTEST((adolc_forward_jacobian(TestFunc1<double, 2, 3>()))); |
| CALL_SUBTEST((adolc_forward_jacobian(TestFunc1<double, 3, 2>()))); |
| CALL_SUBTEST((adolc_forward_jacobian(TestFunc1<double, 3, 3>()))); |
| CALL_SUBTEST((adolc_forward_jacobian(TestFunc1<double>(3, 3)))); |
| } |
| |
| { |
| // simple instantiation tests |
| Matrix<adtl::adouble, 2, 1> x; |
| foo(x); |
| Matrix<adtl::adouble, Dynamic, Dynamic> A(4, 4); |
| ; |
| A.selfadjointView<Lower>().eigenvalues(); |
| } |
| } |