| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de> |
| // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de> |
| // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifdef EIGEN_TEST_PART_1 |
| |
| #include "sparse.h" |
| #include <Eigen/SparseExtra> |
| #include <Eigen/KroneckerProduct> |
| |
| template <typename MatrixType> |
| void check_dimension(const MatrixType& ab, const int rows, const int cols) { |
| VERIFY_IS_EQUAL(ab.rows(), rows); |
| VERIFY_IS_EQUAL(ab.cols(), cols); |
| } |
| |
| template <typename MatrixType> |
| void check_kronecker_product(const MatrixType& ab) { |
| VERIFY_IS_EQUAL(ab.rows(), 6); |
| VERIFY_IS_EQUAL(ab.cols(), 6); |
| VERIFY_IS_EQUAL(ab.size(), 36); |
| VERIFY_IS_APPROX(ab.coeff(0, 0), -0.4017367630386106); |
| VERIFY_IS_APPROX(ab.coeff(0, 1), 0.1056863433932735); |
| VERIFY_IS_APPROX(ab.coeff(0, 2), -0.7255206194554212); |
| VERIFY_IS_APPROX(ab.coeff(0, 3), 0.1908653336744706); |
| VERIFY_IS_APPROX(ab.coeff(0, 4), 0.350864567234111); |
| VERIFY_IS_APPROX(ab.coeff(0, 5), -0.0923032108308013); |
| VERIFY_IS_APPROX(ab.coeff(1, 0), 0.415417514804677); |
| VERIFY_IS_APPROX(ab.coeff(1, 1), -0.2369227701722048); |
| VERIFY_IS_APPROX(ab.coeff(1, 2), 0.7502275131458511); |
| VERIFY_IS_APPROX(ab.coeff(1, 3), -0.4278731019742696); |
| VERIFY_IS_APPROX(ab.coeff(1, 4), -0.3628129162264507); |
| VERIFY_IS_APPROX(ab.coeff(1, 5), 0.2069210808481275); |
| VERIFY_IS_APPROX(ab.coeff(2, 0), 0.05465890160863986); |
| VERIFY_IS_APPROX(ab.coeff(2, 1), -0.2634092511419858); |
| VERIFY_IS_APPROX(ab.coeff(2, 2), 0.09871180285793758); |
| VERIFY_IS_APPROX(ab.coeff(2, 3), -0.4757066334017702); |
| VERIFY_IS_APPROX(ab.coeff(2, 4), -0.04773740823058334); |
| VERIFY_IS_APPROX(ab.coeff(2, 5), 0.2300535609645254); |
| VERIFY_IS_APPROX(ab.coeff(3, 0), -0.8172945853260133); |
| VERIFY_IS_APPROX(ab.coeff(3, 1), 0.2150086428359221); |
| VERIFY_IS_APPROX(ab.coeff(3, 2), 0.5825113847292743); |
| VERIFY_IS_APPROX(ab.coeff(3, 3), -0.1532433770097174); |
| VERIFY_IS_APPROX(ab.coeff(3, 4), -0.329383387282399); |
| VERIFY_IS_APPROX(ab.coeff(3, 5), 0.08665207912033064); |
| VERIFY_IS_APPROX(ab.coeff(4, 0), 0.8451267514863225); |
| VERIFY_IS_APPROX(ab.coeff(4, 1), -0.481996458918977); |
| VERIFY_IS_APPROX(ab.coeff(4, 2), -0.6023482390791535); |
| VERIFY_IS_APPROX(ab.coeff(4, 3), 0.3435339347164565); |
| VERIFY_IS_APPROX(ab.coeff(4, 4), 0.3406002157428891); |
| VERIFY_IS_APPROX(ab.coeff(4, 5), -0.1942526344200915); |
| VERIFY_IS_APPROX(ab.coeff(5, 0), 0.1111982482925399); |
| VERIFY_IS_APPROX(ab.coeff(5, 1), -0.5358806424754169); |
| VERIFY_IS_APPROX(ab.coeff(5, 2), -0.07925446559335647); |
| VERIFY_IS_APPROX(ab.coeff(5, 3), 0.3819388757769038); |
| VERIFY_IS_APPROX(ab.coeff(5, 4), 0.04481475387219876); |
| VERIFY_IS_APPROX(ab.coeff(5, 5), -0.2159688616158057); |
| } |
| |
| template <typename MatrixType> |
| void check_sparse_kronecker_product(const MatrixType& ab) { |
| VERIFY_IS_EQUAL(ab.rows(), 12); |
| VERIFY_IS_EQUAL(ab.cols(), 10); |
| VERIFY_IS_EQUAL(ab.nonZeros(), 3 * 2); |
| VERIFY_IS_APPROX(ab.coeff(3, 0), -0.04); |
| VERIFY_IS_APPROX(ab.coeff(5, 1), 0.05); |
| VERIFY_IS_APPROX(ab.coeff(0, 6), -0.08); |
| VERIFY_IS_APPROX(ab.coeff(2, 7), 0.10); |
| VERIFY_IS_APPROX(ab.coeff(6, 8), 0.12); |
| VERIFY_IS_APPROX(ab.coeff(8, 9), -0.15); |
| } |
| |
| EIGEN_DECLARE_TEST(kronecker_product) { |
| // DM = dense matrix; SM = sparse matrix |
| |
| Matrix<double, 2, 3> DM_a; |
| SparseMatrix<double> SM_a(2, 3); |
| SM_a.insert(0, 0) = DM_a.coeffRef(0, 0) = -0.4461540300782201; |
| SM_a.insert(0, 1) = DM_a.coeffRef(0, 1) = -0.8057364375283049; |
| SM_a.insert(0, 2) = DM_a.coeffRef(0, 2) = 0.3896572459516341; |
| SM_a.insert(1, 0) = DM_a.coeffRef(1, 0) = -0.9076572187376921; |
| SM_a.insert(1, 1) = DM_a.coeffRef(1, 1) = 0.6469156566545853; |
| SM_a.insert(1, 2) = DM_a.coeffRef(1, 2) = -0.3658010398782789; |
| |
| MatrixXd DM_b(3, 2); |
| SparseMatrix<double> SM_b(3, 2); |
| SM_b.insert(0, 0) = DM_b.coeffRef(0, 0) = 0.9004440976767099; |
| SM_b.insert(0, 1) = DM_b.coeffRef(0, 1) = -0.2368830858139832; |
| SM_b.insert(1, 0) = DM_b.coeffRef(1, 0) = -0.9311078389941825; |
| SM_b.insert(1, 1) = DM_b.coeffRef(1, 1) = 0.5310335762980047; |
| SM_b.insert(2, 0) = DM_b.coeffRef(2, 0) = -0.1225112806872035; |
| SM_b.insert(2, 1) = DM_b.coeffRef(2, 1) = 0.5903998022741264; |
| |
| SparseMatrix<double, RowMajor> SM_row_a(SM_a), SM_row_b(SM_b); |
| |
| // test DM_fixedSize = kroneckerProduct(DM_block,DM) |
| Matrix<double, 6, 6> DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2, 3>(), DM_b); |
| |
| CALL_SUBTEST(check_kronecker_product(DM_fix_ab)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a.topLeftCorner<2, 3>(), DM_b))); |
| |
| for (int i = 0; i < DM_fix_ab.rows(); ++i) |
| for (int j = 0; j < DM_fix_ab.cols(); ++j) |
| VERIFY_IS_APPROX(kroneckerProduct(DM_a, DM_b).coeff(i, j), DM_fix_ab(i, j)); |
| |
| // test DM_block = kroneckerProduct(DM,DM) |
| MatrixXd DM_block_ab(10, 15); |
| DM_block_ab.block<6, 6>(2, 5) = kroneckerProduct(DM_a, DM_b); |
| CALL_SUBTEST(check_kronecker_product(DM_block_ab.block<6, 6>(2, 5))); |
| |
| // test DM = kroneckerProduct(DM,DM) |
| MatrixXd DM_ab = kroneckerProduct(DM_a, DM_b); |
| CALL_SUBTEST(check_kronecker_product(DM_ab)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a, DM_b))); |
| |
| // test SM = kroneckerProduct(SM,DM) |
| SparseMatrix<double> SM_ab = kroneckerProduct(SM_a, DM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab)); |
| SparseMatrix<double, RowMajor> SM_ab2 = kroneckerProduct(SM_a, DM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab2)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a, DM_b))); |
| |
| // test SM = kroneckerProduct(DM,SM) |
| SM_ab.setZero(); |
| SM_ab.insert(0, 0) = 37.0; |
| SM_ab = kroneckerProduct(DM_a, SM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab)); |
| SM_ab2.setZero(); |
| SM_ab2.insert(0, 0) = 37.0; |
| SM_ab2 = kroneckerProduct(DM_a, SM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab2)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a, SM_b))); |
| |
| // test SM = kroneckerProduct(SM,SM) |
| SM_ab.resize(2, 33); |
| SM_ab.insert(0, 0) = 37.0; |
| SM_ab = kroneckerProduct(SM_a, SM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab)); |
| SM_ab2.resize(5, 11); |
| SM_ab2.insert(0, 0) = 37.0; |
| SM_ab2 = kroneckerProduct(SM_a, SM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab2)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a, SM_b))); |
| |
| // test SM = kroneckerProduct(SM,SM) with sparse pattern |
| SM_a.resize(4, 5); |
| SM_b.resize(3, 2); |
| SM_a.resizeNonZeros(0); |
| SM_b.resizeNonZeros(0); |
| SM_a.insert(1, 0) = -0.1; |
| SM_a.insert(0, 3) = -0.2; |
| SM_a.insert(2, 4) = 0.3; |
| SM_a.finalize(); |
| |
| SM_b.insert(0, 0) = 0.4; |
| SM_b.insert(2, 1) = -0.5; |
| SM_b.finalize(); |
| SM_ab.resize(1, 1); |
| SM_ab.insert(0, 0) = 37.0; |
| SM_ab = kroneckerProduct(SM_a, SM_b); |
| CALL_SUBTEST(check_sparse_kronecker_product(SM_ab)); |
| |
| // test dimension of result of DM = kroneckerProduct(DM,DM) |
| MatrixXd DM_a2 = Eigen::MatrixXd::Random(2, 1); |
| MatrixXd DM_b2 = Eigen::MatrixXd::Random(5, 4); |
| MatrixXd DM_ab2 = kroneckerProduct(DM_a2, DM_b2); |
| CALL_SUBTEST(check_dimension(DM_ab2, 2 * 5, 1 * 4)); |
| DM_a2 = Eigen::MatrixXd::Random(10, 9); |
| DM_b2 = Eigen::MatrixXd::Random(4, 8); |
| DM_ab2 = kroneckerProduct(DM_a2, DM_b2); |
| CALL_SUBTEST(check_dimension(DM_ab2, 10 * 4, 9 * 8)); |
| |
| for (int i = 0; i < g_repeat; i++) { |
| double density = Eigen::internal::random<double>(0.01, 0.5); |
| int ra = Eigen::internal::random<int>(1, 50); |
| int ca = Eigen::internal::random<int>(1, 50); |
| int rb = Eigen::internal::random<int>(1, 50); |
| int cb = Eigen::internal::random<int>(1, 50); |
| SparseMatrix<float, ColMajor> sA(ra, ca), sB(rb, cb), sC; |
| SparseMatrix<float, RowMajor> sC2; |
| MatrixXf dA(ra, ca), dB(rb, cb), dC; |
| initSparse(density, dA, sA); |
| initSparse(density, dB, sB); |
| |
| sC = kroneckerProduct(sA, sB); |
| dC = kroneckerProduct(dA, dB); |
| VERIFY_IS_APPROX(MatrixXf(sC), dC); |
| |
| sC = kroneckerProduct(sA.transpose(), sB); |
| dC = kroneckerProduct(dA.transpose(), dB); |
| VERIFY_IS_APPROX(MatrixXf(sC), dC); |
| |
| sC = kroneckerProduct(sA.transpose(), sB.transpose()); |
| dC = kroneckerProduct(dA.transpose(), dB.transpose()); |
| VERIFY_IS_APPROX(MatrixXf(sC), dC); |
| |
| sC = kroneckerProduct(sA, sB.transpose()); |
| dC = kroneckerProduct(dA, dB.transpose()); |
| VERIFY_IS_APPROX(MatrixXf(sC), dC); |
| |
| sC2 = kroneckerProduct(sA, sB); |
| dC = kroneckerProduct(dA, dB); |
| VERIFY_IS_APPROX(MatrixXf(sC2), dC); |
| |
| sC2 = kroneckerProduct(dA, sB); |
| dC = kroneckerProduct(dA, dB); |
| VERIFY_IS_APPROX(MatrixXf(sC2), dC); |
| |
| sC2 = kroneckerProduct(sA, dB); |
| dC = kroneckerProduct(dA, dB); |
| VERIFY_IS_APPROX(MatrixXf(sC2), dC); |
| |
| sC2 = kroneckerProduct(2 * sA, sB); |
| dC = kroneckerProduct(2 * dA, dB); |
| VERIFY_IS_APPROX(MatrixXf(sC2), dC); |
| } |
| } |
| |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_2 |
| |
| // simply check that for a dense kronecker product, sparse module is not needed |
| #include "main.h" |
| #include <Eigen/KroneckerProduct> |
| |
| EIGEN_DECLARE_TEST(kronecker_product) { |
| MatrixXd a(2, 2), b(3, 3), c; |
| a.setRandom(); |
| b.setRandom(); |
| c = kroneckerProduct(a, b); |
| VERIFY_IS_APPROX(c.block(3, 3, 3, 3), a(1, 1) * b); |
| } |
| |
| #endif |