blob: f57c874d4350c3449dc6d505414325902a84e743 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/Polynomials>
#include <iostream>
using namespace std;
namespace Eigen {
namespace internal {
template <int Size>
struct increment_if_fixed_size {
enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 };
};
} // namespace internal
} // namespace Eigen
template <typename Scalar_, int Deg_>
void realRoots_to_monicPolynomial_test(int deg) {
typedef internal::increment_if_fixed_size<Deg_> Dim;
typedef Matrix<Scalar_, Dim::ret, 1> PolynomialType;
typedef Matrix<Scalar_, Deg_, 1> EvalRootsType;
PolynomialType pols(deg + 1);
EvalRootsType roots = EvalRootsType::Random(deg);
roots_to_monicPolynomial(roots, pols);
EvalRootsType evr(deg);
for (int i = 0; i < roots.size(); ++i) {
evr[i] = std::abs(poly_eval(pols, roots[i]));
}
bool evalToZero = evr.isZero(test_precision<Scalar_>());
if (!evalToZero) {
cerr << evr.transpose() << endl;
}
VERIFY(evalToZero);
}
template <typename Scalar_>
void realRoots_to_monicPolynomial_scalar() {
CALL_SUBTEST_2((realRoots_to_monicPolynomial_test<Scalar_, 2>(2)));
CALL_SUBTEST_3((realRoots_to_monicPolynomial_test<Scalar_, 3>(3)));
CALL_SUBTEST_4((realRoots_to_monicPolynomial_test<Scalar_, 4>(4)));
CALL_SUBTEST_5((realRoots_to_monicPolynomial_test<Scalar_, 5>(5)));
CALL_SUBTEST_6((realRoots_to_monicPolynomial_test<Scalar_, 6>(6)));
CALL_SUBTEST_7((realRoots_to_monicPolynomial_test<Scalar_, 7>(7)));
CALL_SUBTEST_8((realRoots_to_monicPolynomial_test<Scalar_, 17>(17)));
CALL_SUBTEST_9((realRoots_to_monicPolynomial_test<Scalar_, Dynamic>(internal::random<int>(18, 26))));
}
template <typename Scalar_, int Deg_>
void CauchyBounds(int deg) {
typedef internal::increment_if_fixed_size<Deg_> Dim;
typedef Matrix<Scalar_, Dim::ret, 1> PolynomialType;
typedef Matrix<Scalar_, Deg_, 1> EvalRootsType;
PolynomialType pols(deg + 1);
EvalRootsType roots = EvalRootsType::Random(deg);
roots_to_monicPolynomial(roots, pols);
Scalar_ M = cauchy_max_bound(pols);
Scalar_ m = cauchy_min_bound(pols);
Scalar_ Max = roots.array().abs().maxCoeff();
Scalar_ min = roots.array().abs().minCoeff();
bool eval = (M >= Max) && (m <= min);
if (!eval) {
cerr << "Roots: " << roots << endl;
cerr << "Bounds: (" << m << ", " << M << ")" << endl;
cerr << "Min,Max: (" << min << ", " << Max << ")" << endl;
}
VERIFY(eval);
}
template <typename Scalar_>
void CauchyBounds_scalar() {
CALL_SUBTEST_2((CauchyBounds<Scalar_, 2>(2)));
CALL_SUBTEST_3((CauchyBounds<Scalar_, 3>(3)));
CALL_SUBTEST_4((CauchyBounds<Scalar_, 4>(4)));
CALL_SUBTEST_5((CauchyBounds<Scalar_, 5>(5)));
CALL_SUBTEST_6((CauchyBounds<Scalar_, 6>(6)));
CALL_SUBTEST_7((CauchyBounds<Scalar_, 7>(7)));
CALL_SUBTEST_8((CauchyBounds<Scalar_, 17>(17)));
CALL_SUBTEST_9((CauchyBounds<Scalar_, Dynamic>(internal::random<int>(18, 26))));
}
EIGEN_DECLARE_TEST(polynomialutils) {
for (int i = 0; i < g_repeat; i++) {
realRoots_to_monicPolynomial_scalar<double>();
realRoots_to_monicPolynomial_scalar<float>();
CauchyBounds_scalar<double>();
CauchyBounds_scalar<float>();
}
}