| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/Polynomials> |
| #include <iostream> |
| |
| using namespace std; |
| |
| namespace Eigen { |
| namespace internal { |
| template <int Size> |
| struct increment_if_fixed_size { |
| enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 }; |
| }; |
| } // namespace internal |
| } // namespace Eigen |
| |
| template <typename Scalar_, int Deg_> |
| void realRoots_to_monicPolynomial_test(int deg) { |
| typedef internal::increment_if_fixed_size<Deg_> Dim; |
| typedef Matrix<Scalar_, Dim::ret, 1> PolynomialType; |
| typedef Matrix<Scalar_, Deg_, 1> EvalRootsType; |
| |
| PolynomialType pols(deg + 1); |
| EvalRootsType roots = EvalRootsType::Random(deg); |
| roots_to_monicPolynomial(roots, pols); |
| |
| EvalRootsType evr(deg); |
| for (int i = 0; i < roots.size(); ++i) { |
| evr[i] = std::abs(poly_eval(pols, roots[i])); |
| } |
| |
| bool evalToZero = evr.isZero(test_precision<Scalar_>()); |
| if (!evalToZero) { |
| cerr << evr.transpose() << endl; |
| } |
| VERIFY(evalToZero); |
| } |
| |
| template <typename Scalar_> |
| void realRoots_to_monicPolynomial_scalar() { |
| CALL_SUBTEST_2((realRoots_to_monicPolynomial_test<Scalar_, 2>(2))); |
| CALL_SUBTEST_3((realRoots_to_monicPolynomial_test<Scalar_, 3>(3))); |
| CALL_SUBTEST_4((realRoots_to_monicPolynomial_test<Scalar_, 4>(4))); |
| CALL_SUBTEST_5((realRoots_to_monicPolynomial_test<Scalar_, 5>(5))); |
| CALL_SUBTEST_6((realRoots_to_monicPolynomial_test<Scalar_, 6>(6))); |
| CALL_SUBTEST_7((realRoots_to_monicPolynomial_test<Scalar_, 7>(7))); |
| CALL_SUBTEST_8((realRoots_to_monicPolynomial_test<Scalar_, 17>(17))); |
| |
| CALL_SUBTEST_9((realRoots_to_monicPolynomial_test<Scalar_, Dynamic>(internal::random<int>(18, 26)))); |
| } |
| |
| template <typename Scalar_, int Deg_> |
| void CauchyBounds(int deg) { |
| typedef internal::increment_if_fixed_size<Deg_> Dim; |
| typedef Matrix<Scalar_, Dim::ret, 1> PolynomialType; |
| typedef Matrix<Scalar_, Deg_, 1> EvalRootsType; |
| |
| PolynomialType pols(deg + 1); |
| EvalRootsType roots = EvalRootsType::Random(deg); |
| roots_to_monicPolynomial(roots, pols); |
| Scalar_ M = cauchy_max_bound(pols); |
| Scalar_ m = cauchy_min_bound(pols); |
| Scalar_ Max = roots.array().abs().maxCoeff(); |
| Scalar_ min = roots.array().abs().minCoeff(); |
| bool eval = (M >= Max) && (m <= min); |
| if (!eval) { |
| cerr << "Roots: " << roots << endl; |
| cerr << "Bounds: (" << m << ", " << M << ")" << endl; |
| cerr << "Min,Max: (" << min << ", " << Max << ")" << endl; |
| } |
| VERIFY(eval); |
| } |
| |
| template <typename Scalar_> |
| void CauchyBounds_scalar() { |
| CALL_SUBTEST_2((CauchyBounds<Scalar_, 2>(2))); |
| CALL_SUBTEST_3((CauchyBounds<Scalar_, 3>(3))); |
| CALL_SUBTEST_4((CauchyBounds<Scalar_, 4>(4))); |
| CALL_SUBTEST_5((CauchyBounds<Scalar_, 5>(5))); |
| CALL_SUBTEST_6((CauchyBounds<Scalar_, 6>(6))); |
| CALL_SUBTEST_7((CauchyBounds<Scalar_, 7>(7))); |
| CALL_SUBTEST_8((CauchyBounds<Scalar_, 17>(17))); |
| |
| CALL_SUBTEST_9((CauchyBounds<Scalar_, Dynamic>(internal::random<int>(18, 26)))); |
| } |
| |
| EIGEN_DECLARE_TEST(polynomialutils) { |
| for (int i = 0; i < g_repeat; i++) { |
| realRoots_to_monicPolynomial_scalar<double>(); |
| realRoots_to_monicPolynomial_scalar<float>(); |
| CauchyBounds_scalar<double>(); |
| CauchyBounds_scalar<float>(); |
| } |
| } |