| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H | 
 | #define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H | 
 |  | 
 | #include "./Tridiagonalization.h" | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
 |   * | 
 |   * | 
 |   * \class GeneralizedSelfAdjointEigenSolver | 
 |   * | 
 |   * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem | 
 |   * | 
 |   * \tparam _MatrixType the type of the matrix of which we are computing the | 
 |   * eigendecomposition; this is expected to be an instantiation of the Matrix | 
 |   * class template. | 
 |   * | 
 |   * This class solves the generalized eigenvalue problem | 
 |   * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be | 
 |   * selfadjoint and the matrix \f$ B \f$ should be positive definite. | 
 |   * | 
 |   * Only the \b lower \b triangular \b part of the input matrix is referenced. | 
 |   * | 
 |   * Call the function compute() to compute the eigenvalues and eigenvectors of | 
 |   * a given matrix. Alternatively, you can use the | 
 |   * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) | 
 |   * constructor which computes the eigenvalues and eigenvectors at construction time. | 
 |   * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues() | 
 |   * and eigenvectors() functions. | 
 |   * | 
 |   * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) | 
 |   * contains an example of the typical use of this class. | 
 |   * | 
 |   * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver | 
 |   */ | 
 | template<typename _MatrixType> | 
 | class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType> | 
 | { | 
 |     typedef SelfAdjointEigenSolver<_MatrixType> Base; | 
 |   public: | 
 |  | 
 |     typedef _MatrixType MatrixType; | 
 |  | 
 |     /** \brief Default constructor for fixed-size matrices. | 
 |       * | 
 |       * The default constructor is useful in cases in which the user intends to | 
 |       * perform decompositions via compute(). This constructor | 
 |       * can only be used if \p _MatrixType is a fixed-size matrix; use | 
 |       * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices. | 
 |       */ | 
 |     GeneralizedSelfAdjointEigenSolver() : Base() {} | 
 |  | 
 |     /** \brief Constructor, pre-allocates memory for dynamic-size matrices. | 
 |       * | 
 |       * \param [in]  size  Positive integer, size of the matrix whose | 
 |       * eigenvalues and eigenvectors will be computed. | 
 |       * | 
 |       * This constructor is useful for dynamic-size matrices, when the user | 
 |       * intends to perform decompositions via compute(). The \p size | 
 |       * parameter is only used as a hint. It is not an error to give a wrong | 
 |       * \p size, but it may impair performance. | 
 |       * | 
 |       * \sa compute() for an example | 
 |       */ | 
 |     explicit GeneralizedSelfAdjointEigenSolver(Index size) | 
 |         : Base(size) | 
 |     {} | 
 |  | 
 |     /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil. | 
 |       * | 
 |       * \param[in]  matA  Selfadjoint matrix in matrix pencil. | 
 |       *                   Only the lower triangular part of the matrix is referenced. | 
 |       * \param[in]  matB  Positive-definite matrix in matrix pencil. | 
 |       *                   Only the lower triangular part of the matrix is referenced. | 
 |       * \param[in]  options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}. | 
 |       *                     Default is #ComputeEigenvectors|#Ax_lBx. | 
 |       * | 
 |       * This constructor calls compute(const MatrixType&, const MatrixType&, int) | 
 |       * to compute the eigenvalues and (if requested) the eigenvectors of the | 
 |       * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the | 
 |       * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix | 
 |       * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property | 
 |       * \f$ x^* B x = 1 \f$. The eigenvectors are computed if | 
 |       * \a options contains ComputeEigenvectors. | 
 |       * | 
 |       * In addition, the two following variants can be solved via \p options: | 
 |       * - \c ABx_lx: \f$ ABx = \lambda x \f$ | 
 |       * - \c BAx_lx: \f$ BAx = \lambda x \f$ | 
 |       * | 
 |       * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp | 
 |       * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out | 
 |       * | 
 |       * \sa compute(const MatrixType&, const MatrixType&, int) | 
 |       */ | 
 |     GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, | 
 |                                       int options = ComputeEigenvectors|Ax_lBx) | 
 |       : Base(matA.cols()) | 
 |     { | 
 |       compute(matA, matB, options); | 
 |     } | 
 |  | 
 |     /** \brief Computes generalized eigendecomposition of given matrix pencil. | 
 |       * | 
 |       * \param[in]  matA  Selfadjoint matrix in matrix pencil. | 
 |       *                   Only the lower triangular part of the matrix is referenced. | 
 |       * \param[in]  matB  Positive-definite matrix in matrix pencil. | 
 |       *                   Only the lower triangular part of the matrix is referenced. | 
 |       * \param[in]  options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}. | 
 |       *                     Default is #ComputeEigenvectors|#Ax_lBx. | 
 |       * | 
 |       * \returns    Reference to \c *this | 
 |       * | 
 |       * According to \p options, this function computes eigenvalues and (if requested) | 
 |       * the eigenvectors of one of the following three generalized eigenproblems: | 
 |       * - \c Ax_lBx: \f$ Ax = \lambda B x \f$ | 
 |       * - \c ABx_lx: \f$ ABx = \lambda x \f$ | 
 |       * - \c BAx_lx: \f$ BAx = \lambda x \f$ | 
 |       * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite | 
 |       * matrix \f$ B \f$. | 
 |       * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$. | 
 |       * | 
 |       * The eigenvalues() function can be used to retrieve | 
 |       * the eigenvalues. If \p options contains ComputeEigenvectors, then the | 
 |       * eigenvectors are also computed and can be retrieved by calling | 
 |       * eigenvectors(). | 
 |       * | 
 |       * The implementation uses LLT to compute the Cholesky decomposition | 
 |       * \f$ B = LL^* \f$ and computes the classical eigendecomposition | 
 |       * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx | 
 |       * and of \f$ L^{*} A L \f$ otherwise. This solves the | 
 |       * generalized eigenproblem, because any solution of the generalized | 
 |       * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution | 
 |       * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the | 
 |       * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements | 
 |       * can be made for the two other variants. | 
 |       * | 
 |       * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp | 
 |       * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out | 
 |       * | 
 |       * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) | 
 |       */ | 
 |     GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, | 
 |                                                int options = ComputeEigenvectors|Ax_lBx); | 
 |  | 
 |   protected: | 
 |  | 
 | }; | 
 |  | 
 |  | 
 | template<typename MatrixType> | 
 | GeneralizedSelfAdjointEigenSolver<MatrixType>& GeneralizedSelfAdjointEigenSolver<MatrixType>:: | 
 | compute(const MatrixType& matA, const MatrixType& matB, int options) | 
 | { | 
 |   eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows()); | 
 |   eigen_assert((options&~(EigVecMask|GenEigMask))==0 | 
 |           && (options&EigVecMask)!=EigVecMask | 
 |           && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx | 
 |            || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx) | 
 |           && "invalid option parameter"); | 
 |  | 
 |   bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors); | 
 |  | 
 |   // Compute the cholesky decomposition of matB = L L' = U'U | 
 |   LLT<MatrixType> cholB(matB); | 
 |  | 
 |   int type = (options&GenEigMask); | 
 |   if(type==0) | 
 |     type = Ax_lBx; | 
 |  | 
 |   if(type==Ax_lBx) | 
 |   { | 
 |     // compute C = inv(L) A inv(L') | 
 |     MatrixType matC = matA.template selfadjointView<Lower>(); | 
 |     cholB.matrixL().template solveInPlace<OnTheLeft>(matC); | 
 |     cholB.matrixU().template solveInPlace<OnTheRight>(matC); | 
 |  | 
 |     Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly ); | 
 |  | 
 |     // transform back the eigen vectors: evecs = inv(U) * evecs | 
 |     if(computeEigVecs) | 
 |       cholB.matrixU().solveInPlace(Base::m_eivec); | 
 |   } | 
 |   else if(type==ABx_lx) | 
 |   { | 
 |     // compute C = L' A L | 
 |     MatrixType matC = matA.template selfadjointView<Lower>(); | 
 |     matC = matC * cholB.matrixL(); | 
 |     matC = cholB.matrixU() * matC; | 
 |  | 
 |     Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly); | 
 |  | 
 |     // transform back the eigen vectors: evecs = inv(U) * evecs | 
 |     if(computeEigVecs) | 
 |       cholB.matrixU().solveInPlace(Base::m_eivec); | 
 |   } | 
 |   else if(type==BAx_lx) | 
 |   { | 
 |     // compute C = L' A L | 
 |     MatrixType matC = matA.template selfadjointView<Lower>(); | 
 |     matC = matC * cholB.matrixL(); | 
 |     matC = cholB.matrixU() * matC; | 
 |  | 
 |     Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly); | 
 |  | 
 |     // transform back the eigen vectors: evecs = L * evecs | 
 |     if(computeEigVecs) | 
 |       Base::m_eivec = cholB.matrixL() * Base::m_eivec; | 
 |   } | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H |