| /* | 
 |  Copyright (c) 2011, Intel Corporation. All rights reserved. | 
 |  | 
 |  Redistribution and use in source and binary forms, with or without modification, | 
 |  are permitted provided that the following conditions are met: | 
 |  | 
 |  * Redistributions of source code must retain the above copyright notice, this | 
 |    list of conditions and the following disclaimer. | 
 |  * Redistributions in binary form must reproduce the above copyright notice, | 
 |    this list of conditions and the following disclaimer in the documentation | 
 |    and/or other materials provided with the distribution. | 
 |  * Neither the name of Intel Corporation nor the names of its contributors may | 
 |    be used to endorse or promote products derived from this software without | 
 |    specific prior written permission. | 
 |  | 
 |  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | 
 |  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
 |  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
 |  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR | 
 |  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
 |  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | 
 |  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
 |  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  ******************************************************************************** | 
 |  *   Content : Eigen bindings to LAPACKe | 
 |  *    Self-adjoint eigenvalues/eigenvectors. | 
 |  ******************************************************************************** | 
 | */ | 
 |  | 
 | #ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H | 
 | #define EIGEN_SAEIGENSOLVER_LAPACKE_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | /** \internal Specialization for the data types supported by LAPACKe */ | 
 |  | 
 | #define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \ | 
 | template<> template<typename InputType> inline \ | 
 | SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \ | 
 | SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, int options) \ | 
 | { \ | 
 |   eigen_assert(matrix.cols() == matrix.rows()); \ | 
 |   eigen_assert((options&~(EigVecMask|GenEigMask))==0 \ | 
 |           && (options&EigVecMask)!=EigVecMask \ | 
 |           && "invalid option parameter"); \ | 
 |   bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \ | 
 |   lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), lda, info; \ | 
 |   m_eivalues.resize(n,1); \ | 
 |   m_subdiag.resize(n-1); \ | 
 |   m_eivec = matrix; \ | 
 | \ | 
 |   if(n==1) \ | 
 |   { \ | 
 |     m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); \ | 
 |     if(computeEigenvectors) m_eivec.setOnes(n,n); \ | 
 |     m_info = Success; \ | 
 |     m_isInitialized = true; \ | 
 |     m_eigenvectorsOk = computeEigenvectors; \ | 
 |     return *this; \ | 
 |   } \ | 
 | \ | 
 |   lda = internal::convert_index<lapack_int>(m_eivec.outerStride()); \ | 
 |   char jobz, uplo='L'/*, range='A'*/; \ | 
 |   jobz = computeEigenvectors ? 'V' : 'N'; \ | 
 | \ | 
 |   info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \ | 
 |   m_info = (info==0) ? Success : NoConvergence; \ | 
 |   m_isInitialized = true; \ | 
 |   m_eigenvectorsOk = computeEigenvectors; \ | 
 |   return *this; \ | 
 | } | 
 |  | 
 | #define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME )              \ | 
 |         EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor )  \ | 
 |         EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor )  | 
 |  | 
 | EIGEN_LAPACKE_EIG_SELFADJ(double,   double,                double, dsyev) | 
 | EIGEN_LAPACKE_EIG_SELFADJ(float,    float,                 float,  ssyev) | 
 | EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev) | 
 | EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float,  float,  cheev) | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_SAEIGENSOLVER_H |