|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> | 
|  | // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> | 
|  | // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> | 
|  | // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SVDBASE_H | 
|  | #define EIGEN_SVDBASE_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | template<typename Derived> struct traits<SVDBase<Derived> > | 
|  | : traits<Derived> | 
|  | { | 
|  | typedef MatrixXpr XprKind; | 
|  | typedef SolverStorage StorageKind; | 
|  | typedef int StorageIndex; | 
|  | enum { Flags = 0 }; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** \ingroup SVD_Module | 
|  | * | 
|  | * | 
|  | * \class SVDBase | 
|  | * | 
|  | * \brief Base class of SVD algorithms | 
|  | * | 
|  | * \tparam Derived the type of the actual SVD decomposition | 
|  | * | 
|  | * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product | 
|  | *   \f[ A = U S V^* \f] | 
|  | * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; | 
|  | * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left | 
|  | * and right \em singular \em vectors of \a A respectively. | 
|  | * | 
|  | * Singular values are always sorted in decreasing order. | 
|  | * | 
|  | * | 
|  | * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the | 
|  | * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual | 
|  | * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, | 
|  | * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. | 
|  | * | 
|  | * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to | 
|  | * terminate in finite (and reasonable) time. | 
|  | * \sa class BDCSVD, class JacobiSVD | 
|  | */ | 
|  | template<typename Derived> class SVDBase | 
|  | : public SolverBase<SVDBase<Derived> > | 
|  | { | 
|  | public: | 
|  |  | 
|  | template<typename Derived_> | 
|  | friend struct internal::solve_assertion; | 
|  |  | 
|  | typedef typename internal::traits<Derived>::MatrixType MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
|  | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), | 
|  | MatrixOptions = MatrixType::Options | 
|  | }; | 
|  |  | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType; | 
|  | typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType; | 
|  | typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; | 
|  |  | 
|  | Derived& derived() { return *static_cast<Derived*>(this); } | 
|  | const Derived& derived() const { return *static_cast<const Derived*>(this); } | 
|  |  | 
|  | /** \returns the \a U matrix. | 
|  | * | 
|  | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, | 
|  | * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink. | 
|  | * | 
|  | * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. | 
|  | * | 
|  | * This method asserts that you asked for \a U to be computed. | 
|  | */ | 
|  | const MatrixUType& matrixU() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "SVD is not initialized."); | 
|  | eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); | 
|  | return m_matrixU; | 
|  | } | 
|  |  | 
|  | /** \returns the \a V matrix. | 
|  | * | 
|  | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, | 
|  | * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink. | 
|  | * | 
|  | * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. | 
|  | * | 
|  | * This method asserts that you asked for \a V to be computed. | 
|  | */ | 
|  | const MatrixVType& matrixV() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "SVD is not initialized."); | 
|  | eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); | 
|  | return m_matrixV; | 
|  | } | 
|  |  | 
|  | /** \returns the vector of singular values. | 
|  | * | 
|  | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the | 
|  | * returned vector has size \a m.  Singular values are always sorted in decreasing order. | 
|  | */ | 
|  | const SingularValuesType& singularValues() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "SVD is not initialized."); | 
|  | return m_singularValues; | 
|  | } | 
|  |  | 
|  | /** \returns the number of singular values that are not exactly 0 */ | 
|  | Index nonzeroSingularValues() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "SVD is not initialized."); | 
|  | return m_nonzeroSingularValues; | 
|  | } | 
|  |  | 
|  | /** \returns the rank of the matrix of which \c *this is the SVD. | 
|  | * | 
|  | * \note This method has to determine which singular values should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline Index rank() const | 
|  | { | 
|  | using std::abs; | 
|  | eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); | 
|  | if(m_singularValues.size()==0) return 0; | 
|  | RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)()); | 
|  | Index i = m_nonzeroSingularValues-1; | 
|  | while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; | 
|  | return i+1; | 
|  | } | 
|  |  | 
|  | /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), | 
|  | * which need to determine when singular values are to be considered nonzero. | 
|  | * This is not used for the SVD decomposition itself. | 
|  | * | 
|  | * When it needs to get the threshold value, Eigen calls threshold(). | 
|  | * The default is \c NumTraits<Scalar>::epsilon() | 
|  | * | 
|  | * \param threshold The new value to use as the threshold. | 
|  | * | 
|  | * A singular value will be considered nonzero if its value is strictly greater than | 
|  | *  \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. | 
|  | * | 
|  | * If you want to come back to the default behavior, call setThreshold(Default_t) | 
|  | */ | 
|  | Derived& setThreshold(const RealScalar& threshold) | 
|  | { | 
|  | m_usePrescribedThreshold = true; | 
|  | m_prescribedThreshold = threshold; | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** Allows to come back to the default behavior, letting Eigen use its default formula for | 
|  | * determining the threshold. | 
|  | * | 
|  | * You should pass the special object Eigen::Default as parameter here. | 
|  | * \code svd.setThreshold(Eigen::Default); \endcode | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | Derived& setThreshold(Default_t) | 
|  | { | 
|  | m_usePrescribedThreshold = false; | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** Returns the threshold that will be used by certain methods such as rank(). | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | RealScalar threshold() const | 
|  | { | 
|  | eigen_assert(m_isInitialized || m_usePrescribedThreshold); | 
|  | // this temporary is needed to workaround a MSVC issue | 
|  | Index diagSize = (std::max<Index>)(1,m_diagSize); | 
|  | return m_usePrescribedThreshold ? m_prescribedThreshold | 
|  | : RealScalar(diagSize)*NumTraits<Scalar>::epsilon(); | 
|  | } | 
|  |  | 
|  | /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ | 
|  | inline bool computeU() const { return m_computeFullU || m_computeThinU; } | 
|  | /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ | 
|  | inline bool computeV() const { return m_computeFullV || m_computeThinV; } | 
|  |  | 
|  | inline Index rows() const { return m_rows; } | 
|  | inline Index cols() const { return m_cols; } | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. | 
|  | * | 
|  | * \param b the right-hand-side of the equation to solve. | 
|  | * | 
|  | * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. | 
|  | * | 
|  | * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. | 
|  | * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const Solve<Derived, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const; | 
|  | #endif | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename RhsType, typename DstType> | 
|  | void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
|  |  | 
|  | template<bool Conjugate, typename RhsType, typename DstType> | 
|  | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  |  | 
|  | static void check_template_parameters() | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
|  | } | 
|  |  | 
|  | template<bool Transpose_, typename Rhs> | 
|  | void _check_solve_assertion(const Rhs& b) const { | 
|  | EIGEN_ONLY_USED_FOR_DEBUG(b); | 
|  | eigen_assert(m_isInitialized && "SVD is not initialized."); | 
|  | eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice)."); | 
|  | eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b"); | 
|  | } | 
|  |  | 
|  | // return true if already allocated | 
|  | bool allocate(Index rows, Index cols, unsigned int computationOptions) ; | 
|  |  | 
|  | MatrixUType m_matrixU; | 
|  | MatrixVType m_matrixV; | 
|  | SingularValuesType m_singularValues; | 
|  | bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; | 
|  | bool m_computeFullU, m_computeThinU; | 
|  | bool m_computeFullV, m_computeThinV; | 
|  | unsigned int m_computationOptions; | 
|  | Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; | 
|  | RealScalar m_prescribedThreshold; | 
|  |  | 
|  | /** \brief Default Constructor. | 
|  | * | 
|  | * Default constructor of SVDBase | 
|  | */ | 
|  | SVDBase() | 
|  | : m_isInitialized(false), | 
|  | m_isAllocated(false), | 
|  | m_usePrescribedThreshold(false), | 
|  | m_computeFullU(false), | 
|  | m_computeThinU(false), | 
|  | m_computeFullV(false), | 
|  | m_computeThinV(false), | 
|  | m_computationOptions(0), | 
|  | m_rows(-1), m_cols(-1), m_diagSize(0) | 
|  | { | 
|  | check_template_parameters(); | 
|  | } | 
|  |  | 
|  |  | 
|  | }; | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename Derived> | 
|  | template<typename RhsType, typename DstType> | 
|  | void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
|  | { | 
|  | // A = U S V^* | 
|  | // So A^{-1} = V S^{-1} U^* | 
|  |  | 
|  | Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp; | 
|  | Index l_rank = rank(); | 
|  | tmp.noalias() =  m_matrixU.leftCols(l_rank).adjoint() * rhs; | 
|  | tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; | 
|  | dst = m_matrixV.leftCols(l_rank) * tmp; | 
|  | } | 
|  |  | 
|  | template<typename Derived> | 
|  | template<bool Conjugate, typename RhsType, typename DstType> | 
|  | void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const | 
|  | { | 
|  | // A = U S V^* | 
|  | // So  A^{-*} = U S^{-1} V^* | 
|  | // And A^{-T} = U_conj S^{-1} V^T | 
|  | Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp; | 
|  | Index l_rank = rank(); | 
|  |  | 
|  | tmp.noalias() =  m_matrixV.leftCols(l_rank).transpose().template conjugateIf<Conjugate>() * rhs; | 
|  | tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; | 
|  | dst = m_matrixU.template conjugateIf<!Conjugate>().leftCols(l_rank) * tmp; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | template<typename MatrixType> | 
|  | bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) | 
|  | { | 
|  | eigen_assert(rows >= 0 && cols >= 0); | 
|  |  | 
|  | if (m_isAllocated && | 
|  | rows == m_rows && | 
|  | cols == m_cols && | 
|  | computationOptions == m_computationOptions) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | m_rows = rows; | 
|  | m_cols = cols; | 
|  | m_isInitialized = false; | 
|  | m_isAllocated = true; | 
|  | m_computationOptions = computationOptions; | 
|  | m_computeFullU = (computationOptions & ComputeFullU) != 0; | 
|  | m_computeThinU = (computationOptions & ComputeThinU) != 0; | 
|  | m_computeFullV = (computationOptions & ComputeFullV) != 0; | 
|  | m_computeThinV = (computationOptions & ComputeThinV) != 0; | 
|  | eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); | 
|  | eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); | 
|  | eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && | 
|  | "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns."); | 
|  |  | 
|  | m_diagSize = (std::min)(m_rows, m_cols); | 
|  | m_singularValues.resize(m_diagSize); | 
|  | if(RowsAtCompileTime==Dynamic) | 
|  | m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); | 
|  | if(ColsAtCompileTime==Dynamic) | 
|  | m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | }// end namespace | 
|  |  | 
|  | #endif // EIGEN_SVDBASE_H |