| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SIMPLICIAL_CHOLESKY_H | 
 | #define EIGEN_SIMPLICIAL_CHOLESKY_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | enum SimplicialCholeskyMode { | 
 |   SimplicialCholeskyLLT, | 
 |   SimplicialCholeskyLDLT | 
 | }; | 
 |  | 
 | namespace internal { | 
 |   template<typename CholMatrixType, typename InputMatrixType> | 
 |   struct simplicial_cholesky_grab_input { | 
 |     typedef CholMatrixType const * ConstCholMatrixPtr; | 
 |     static void run(const InputMatrixType& input, ConstCholMatrixPtr &pmat, CholMatrixType &tmp) | 
 |     { | 
 |       tmp = input; | 
 |       pmat = &tmp; | 
 |     } | 
 |   }; | 
 |    | 
 |   template<typename MatrixType> | 
 |   struct simplicial_cholesky_grab_input<MatrixType,MatrixType> { | 
 |     typedef MatrixType const * ConstMatrixPtr; | 
 |     static void run(const MatrixType& input, ConstMatrixPtr &pmat, MatrixType &/*tmp*/) | 
 |     { | 
 |       pmat = &input; | 
 |     } | 
 |   }; | 
 | } // end namespace internal | 
 |  | 
 | /** \ingroup SparseCholesky_Module | 
 |   * \brief A base class for direct sparse Cholesky factorizations | 
 |   * | 
 |   * This is a base class for LL^T and LDL^T Cholesky factorizations of sparse matrices that are | 
 |   * selfadjoint and positive definite. These factorizations allow for solving A.X = B where | 
 |   * X and B can be either dense or sparse. | 
 |   *  | 
 |   * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization | 
 |   * such that the factorized matrix is P A P^-1. | 
 |   * | 
 |   * \tparam Derived the type of the derived class, that is the actual factorization type. | 
 |   * | 
 |   */ | 
 | template<typename Derived> | 
 | class SimplicialCholeskyBase : public SparseSolverBase<Derived> | 
 | { | 
 |     typedef SparseSolverBase<Derived> Base; | 
 |     using Base::m_isInitialized; | 
 |      | 
 |   public: | 
 |     typedef typename internal::traits<Derived>::MatrixType MatrixType; | 
 |     typedef typename internal::traits<Derived>::OrderingType OrderingType; | 
 |     enum { UpLo = internal::traits<Derived>::UpLo }; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |     typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType; | 
 |     typedef CholMatrixType const * ConstCholMatrixPtr; | 
 |     typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |     typedef Matrix<StorageIndex,Dynamic,1> VectorI; | 
 |  | 
 |     enum { | 
 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |  | 
 |   public: | 
 |      | 
 |     using Base::derived; | 
 |  | 
 |     /** Default constructor */ | 
 |     SimplicialCholeskyBase() | 
 |       : m_info(Success), | 
 |         m_factorizationIsOk(false), | 
 |         m_analysisIsOk(false), | 
 |         m_shiftOffset(0), | 
 |         m_shiftScale(1) | 
 |     {} | 
 |  | 
 |     explicit SimplicialCholeskyBase(const MatrixType& matrix) | 
 |       : m_info(Success), | 
 |         m_factorizationIsOk(false), | 
 |         m_analysisIsOk(false), | 
 |         m_shiftOffset(0), | 
 |         m_shiftScale(1) | 
 |     { | 
 |       derived().compute(matrix); | 
 |     } | 
 |  | 
 |     ~SimplicialCholeskyBase() | 
 |     { | 
 |     } | 
 |  | 
 |     Derived& derived() { return *static_cast<Derived*>(this); } | 
 |     const Derived& derived() const { return *static_cast<const Derived*>(this); } | 
 |      | 
 |     inline Index cols() const { return m_matrix.cols(); } | 
 |     inline Index rows() const { return m_matrix.rows(); } | 
 |      | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was successful, | 
 |       *          \c NumericalIssue if the matrix.appears to be negative. | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |      | 
 |     /** \returns the permutation P | 
 |       * \sa permutationPinv() */ | 
 |     const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationP() const | 
 |     { return m_P; } | 
 |      | 
 |     /** \returns the inverse P^-1 of the permutation P | 
 |       * \sa permutationP() */ | 
 |     const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationPinv() const | 
 |     { return m_Pinv; } | 
 |  | 
 |     /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization. | 
 |       * | 
 |       * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n | 
 |       * \c d_ii = \a offset + \a scale * \c d_ii | 
 |       * | 
 |       * The default is the identity transformation with \a offset=0, and \a scale=1. | 
 |       * | 
 |       * \returns a reference to \c *this. | 
 |       */ | 
 |     Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1) | 
 |     { | 
 |       m_shiftOffset = offset; | 
 |       m_shiftScale = scale; | 
 |       return derived(); | 
 |     } | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |     /** \internal */ | 
 |     template<typename Stream> | 
 |     void dumpMemory(Stream& s) | 
 |     { | 
 |       int total = 0; | 
 |       s << "  L:        " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n"; | 
 |       s << "  diag:     " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n"; | 
 |       s << "  tree:     " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n"; | 
 |       s << "  nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n"; | 
 |       s << "  perm:     " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n"; | 
 |       s << "  perm^-1:  " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n"; | 
 |       s << "  TOTAL:    " << (total>> 20) << "Mb" << "\n"; | 
 |     } | 
 |  | 
 |     /** \internal */ | 
 |     template<typename Rhs,typename Dest> | 
 |     void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const | 
 |     { | 
 |       eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); | 
 |       eigen_assert(m_matrix.rows()==b.rows()); | 
 |  | 
 |       if(m_info!=Success) | 
 |         return; | 
 |  | 
 |       if(m_P.size()>0) | 
 |         dest = m_P * b; | 
 |       else | 
 |         dest = b; | 
 |  | 
 |       if(m_matrix.nonZeros()>0) // otherwise L==I | 
 |         derived().matrixL().solveInPlace(dest); | 
 |  | 
 |       if(m_diag.size()>0) | 
 |         dest = m_diag.asDiagonal().inverse() * dest; | 
 |  | 
 |       if (m_matrix.nonZeros()>0) // otherwise U==I | 
 |         derived().matrixU().solveInPlace(dest); | 
 |  | 
 |       if(m_P.size()>0) | 
 |         dest = m_Pinv * dest; | 
 |     } | 
 |      | 
 |     template<typename Rhs,typename Dest> | 
 |     void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const | 
 |     { | 
 |       internal::solve_sparse_through_dense_panels(derived(), b, dest); | 
 |     } | 
 |  | 
 | #endif // EIGEN_PARSED_BY_DOXYGEN | 
 |  | 
 |   protected: | 
 |      | 
 |     /** Computes the sparse Cholesky decomposition of \a matrix */ | 
 |     template<bool DoLDLT> | 
 |     void compute(const MatrixType& matrix) | 
 |     { | 
 |       eigen_assert(matrix.rows()==matrix.cols()); | 
 |       Index size = matrix.cols(); | 
 |       CholMatrixType tmp(size,size); | 
 |       ConstCholMatrixPtr pmat; | 
 |       ordering(matrix, pmat, tmp); | 
 |       analyzePattern_preordered(*pmat, DoLDLT); | 
 |       factorize_preordered<DoLDLT>(*pmat); | 
 |     } | 
 |      | 
 |     template<bool DoLDLT> | 
 |     void factorize(const MatrixType& a) | 
 |     { | 
 |       eigen_assert(a.rows()==a.cols()); | 
 |       Index size = a.cols(); | 
 |       CholMatrixType tmp(size,size); | 
 |       ConstCholMatrixPtr pmat; | 
 |        | 
 |       if(m_P.size()==0 && (UpLo&Upper)==Upper) | 
 |       { | 
 |         // If there is no ordering, try to directly use the input matrix without any copy | 
 |         internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, tmp); | 
 |       } | 
 |       else | 
 |       { | 
 |         tmp.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); | 
 |         pmat = &tmp; | 
 |       } | 
 |        | 
 |       factorize_preordered<DoLDLT>(*pmat); | 
 |     } | 
 |  | 
 |     template<bool DoLDLT> | 
 |     void factorize_preordered(const CholMatrixType& a); | 
 |  | 
 |     void analyzePattern(const MatrixType& a, bool doLDLT) | 
 |     { | 
 |       eigen_assert(a.rows()==a.cols()); | 
 |       Index size = a.cols(); | 
 |       CholMatrixType tmp(size,size); | 
 |       ConstCholMatrixPtr pmat; | 
 |       ordering(a, pmat, tmp); | 
 |       analyzePattern_preordered(*pmat,doLDLT); | 
 |     } | 
 |     void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT); | 
 |      | 
 |     void ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap); | 
 |  | 
 |     /** keeps off-diagonal entries; drops diagonal entries */ | 
 |     struct keep_diag { | 
 |       inline bool operator() (const Index& row, const Index& col, const Scalar&) const | 
 |       { | 
 |         return row!=col; | 
 |       } | 
 |     }; | 
 |  | 
 |     mutable ComputationInfo m_info; | 
 |     bool m_factorizationIsOk; | 
 |     bool m_analysisIsOk; | 
 |      | 
 |     CholMatrixType m_matrix; | 
 |     VectorType m_diag;                                // the diagonal coefficients (LDLT mode) | 
 |     VectorI m_parent;                                 // elimination tree | 
 |     VectorI m_nonZerosPerCol; | 
 |     PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P;     // the permutation | 
 |     PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv;  // the inverse permutation | 
 |  | 
 |     RealScalar m_shiftOffset; | 
 |     RealScalar m_shiftScale; | 
 | }; | 
 |  | 
 | template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLLT; | 
 | template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLDLT; | 
 | template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialCholesky; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> > | 
 | { | 
 |   typedef _MatrixType MatrixType; | 
 |   typedef _Ordering OrderingType; | 
 |   enum { UpLo = _UpLo }; | 
 |   typedef typename MatrixType::Scalar                         Scalar; | 
 |   typedef typename MatrixType::StorageIndex                   StorageIndex; | 
 |   typedef SparseMatrix<Scalar, ColMajor, StorageIndex>        CholMatrixType; | 
 |   typedef TriangularView<const CholMatrixType, Eigen::Lower>  MatrixL; | 
 |   typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::Upper>   MatrixU; | 
 |   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } | 
 |   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } | 
 | }; | 
 |  | 
 | template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> > | 
 | { | 
 |   typedef _MatrixType MatrixType; | 
 |   typedef _Ordering OrderingType; | 
 |   enum { UpLo = _UpLo }; | 
 |   typedef typename MatrixType::Scalar                             Scalar; | 
 |   typedef typename MatrixType::StorageIndex                       StorageIndex; | 
 |   typedef SparseMatrix<Scalar, ColMajor, StorageIndex>            CholMatrixType; | 
 |   typedef TriangularView<const CholMatrixType, Eigen::UnitLower>  MatrixL; | 
 |   typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU; | 
 |   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } | 
 |   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } | 
 | }; | 
 |  | 
 | template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> > | 
 | { | 
 |   typedef _MatrixType MatrixType; | 
 |   typedef _Ordering OrderingType; | 
 |   enum { UpLo = _UpLo }; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | /** \ingroup SparseCholesky_Module | 
 |   * \class SimplicialLLT | 
 |   * \brief A direct sparse LLT Cholesky factorizations | 
 |   * | 
 |   * This class provides a LL^T Cholesky factorizations of sparse matrices that are | 
 |   * selfadjoint and positive definite. The factorization allows for solving A.X = B where | 
 |   * X and B can be either dense or sparse. | 
 |   *  | 
 |   * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization | 
 |   * such that the factorized matrix is P A P^-1. | 
 |   * | 
 |   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower | 
 |   *               or Upper. Default is Lower. | 
 |   * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering | 
 |   */ | 
 | template<typename _MatrixType, int _UpLo, typename _Ordering> | 
 |     class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> > | 
 | { | 
 | public: | 
 |     typedef _MatrixType MatrixType; | 
 |     enum { UpLo = _UpLo }; | 
 |     typedef SimplicialCholeskyBase<SimplicialLLT> Base; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |     typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; | 
 |     typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |     typedef internal::traits<SimplicialLLT> Traits; | 
 |     typedef typename Traits::MatrixL  MatrixL; | 
 |     typedef typename Traits::MatrixU  MatrixU; | 
 | public: | 
 |     /** Default constructor */ | 
 |     SimplicialLLT() : Base() {} | 
 |     /** Constructs and performs the LLT factorization of \a matrix */ | 
 |     explicit SimplicialLLT(const MatrixType& matrix) | 
 |         : Base(matrix) {} | 
 |  | 
 |     /** \returns an expression of the factor L */ | 
 |     inline const MatrixL matrixL() const { | 
 |         eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); | 
 |         return Traits::getL(Base::m_matrix); | 
 |     } | 
 |  | 
 |     /** \returns an expression of the factor U (= L^*) */ | 
 |     inline const MatrixU matrixU() const { | 
 |         eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); | 
 |         return Traits::getU(Base::m_matrix); | 
 |     } | 
 |      | 
 |     /** Computes the sparse Cholesky decomposition of \a matrix */ | 
 |     SimplicialLLT& compute(const MatrixType& matrix) | 
 |     { | 
 |       Base::template compute<false>(matrix); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
 |       * | 
 |       * This function is particularly useful when solving for several problems having the same structure. | 
 |       * | 
 |       * \sa factorize() | 
 |       */ | 
 |     void analyzePattern(const MatrixType& a) | 
 |     { | 
 |       Base::analyzePattern(a, false); | 
 |     } | 
 |  | 
 |     /** Performs a numeric decomposition of \a matrix | 
 |       * | 
 |       * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
 |       * | 
 |       * \sa analyzePattern() | 
 |       */ | 
 |     void factorize(const MatrixType& a) | 
 |     { | 
 |       Base::template factorize<false>(a); | 
 |     } | 
 |  | 
 |     /** \returns the determinant of the underlying matrix from the current factorization */ | 
 |     Scalar determinant() const | 
 |     { | 
 |       Scalar detL = Base::m_matrix.diagonal().prod(); | 
 |       return numext::abs2(detL); | 
 |     } | 
 | }; | 
 |  | 
 | /** \ingroup SparseCholesky_Module | 
 |   * \class SimplicialLDLT | 
 |   * \brief A direct sparse LDLT Cholesky factorizations without square root. | 
 |   * | 
 |   * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are | 
 |   * selfadjoint and positive definite. The factorization allows for solving A.X = B where | 
 |   * X and B can be either dense or sparse. | 
 |   *  | 
 |   * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization | 
 |   * such that the factorized matrix is P A P^-1. | 
 |   * | 
 |   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower | 
 |   *               or Upper. Default is Lower. | 
 |   * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering | 
 |   */ | 
 | template<typename _MatrixType, int _UpLo, typename _Ordering> | 
 |     class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> > | 
 | { | 
 | public: | 
 |     typedef _MatrixType MatrixType; | 
 |     enum { UpLo = _UpLo }; | 
 |     typedef SimplicialCholeskyBase<SimplicialLDLT> Base; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |     typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType; | 
 |     typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |     typedef internal::traits<SimplicialLDLT> Traits; | 
 |     typedef typename Traits::MatrixL  MatrixL; | 
 |     typedef typename Traits::MatrixU  MatrixU; | 
 | public: | 
 |     /** Default constructor */ | 
 |     SimplicialLDLT() : Base() {} | 
 |  | 
 |     /** Constructs and performs the LLT factorization of \a matrix */ | 
 |     explicit SimplicialLDLT(const MatrixType& matrix) | 
 |         : Base(matrix) {} | 
 |  | 
 |     /** \returns a vector expression of the diagonal D */ | 
 |     inline const VectorType vectorD() const { | 
 |         eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); | 
 |         return Base::m_diag; | 
 |     } | 
 |     /** \returns an expression of the factor L */ | 
 |     inline const MatrixL matrixL() const { | 
 |         eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); | 
 |         return Traits::getL(Base::m_matrix); | 
 |     } | 
 |  | 
 |     /** \returns an expression of the factor U (= L^*) */ | 
 |     inline const MatrixU matrixU() const { | 
 |         eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); | 
 |         return Traits::getU(Base::m_matrix); | 
 |     } | 
 |  | 
 |     /** Computes the sparse Cholesky decomposition of \a matrix */ | 
 |     SimplicialLDLT& compute(const MatrixType& matrix) | 
 |     { | 
 |       Base::template compute<true>(matrix); | 
 |       return *this; | 
 |     } | 
 |      | 
 |     /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
 |       * | 
 |       * This function is particularly useful when solving for several problems having the same structure. | 
 |       * | 
 |       * \sa factorize() | 
 |       */ | 
 |     void analyzePattern(const MatrixType& a) | 
 |     { | 
 |       Base::analyzePattern(a, true); | 
 |     } | 
 |  | 
 |     /** Performs a numeric decomposition of \a matrix | 
 |       * | 
 |       * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
 |       * | 
 |       * \sa analyzePattern() | 
 |       */ | 
 |     void factorize(const MatrixType& a) | 
 |     { | 
 |       Base::template factorize<true>(a); | 
 |     } | 
 |  | 
 |     /** \returns the determinant of the underlying matrix from the current factorization */ | 
 |     Scalar determinant() const | 
 |     { | 
 |       return Base::m_diag.prod(); | 
 |     } | 
 | }; | 
 |  | 
 | /** \deprecated use SimplicialLDLT or class SimplicialLLT | 
 |   * \ingroup SparseCholesky_Module | 
 |   * \class SimplicialCholesky | 
 |   * | 
 |   * \sa class SimplicialLDLT, class SimplicialLLT | 
 |   */ | 
 | template<typename _MatrixType, int _UpLo, typename _Ordering> | 
 |     class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> > | 
 | { | 
 | public: | 
 |     typedef _MatrixType MatrixType; | 
 |     enum { UpLo = _UpLo }; | 
 |     typedef SimplicialCholeskyBase<SimplicialCholesky> Base; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |     typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType; | 
 |     typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |     typedef internal::traits<SimplicialCholesky> Traits; | 
 |     typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits; | 
 |     typedef internal::traits<SimplicialLLT<MatrixType,UpLo>  > LLTTraits; | 
 |   public: | 
 |     SimplicialCholesky() : Base(), m_LDLT(true) {} | 
 |  | 
 |     explicit SimplicialCholesky(const MatrixType& matrix) | 
 |       : Base(), m_LDLT(true) | 
 |     { | 
 |       compute(matrix); | 
 |     } | 
 |  | 
 |     SimplicialCholesky& setMode(SimplicialCholeskyMode mode) | 
 |     { | 
 |       switch(mode) | 
 |       { | 
 |       case SimplicialCholeskyLLT: | 
 |         m_LDLT = false; | 
 |         break; | 
 |       case SimplicialCholeskyLDLT: | 
 |         m_LDLT = true; | 
 |         break; | 
 |       default: | 
 |         break; | 
 |       } | 
 |  | 
 |       return *this; | 
 |     } | 
 |  | 
 |     inline const VectorType vectorD() const { | 
 |         eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); | 
 |         return Base::m_diag; | 
 |     } | 
 |     inline const CholMatrixType rawMatrix() const { | 
 |         eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); | 
 |         return Base::m_matrix; | 
 |     } | 
 |      | 
 |     /** Computes the sparse Cholesky decomposition of \a matrix */ | 
 |     SimplicialCholesky& compute(const MatrixType& matrix) | 
 |     { | 
 |       if(m_LDLT) | 
 |         Base::template compute<true>(matrix); | 
 |       else | 
 |         Base::template compute<false>(matrix); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
 |       * | 
 |       * This function is particularly useful when solving for several problems having the same structure. | 
 |       * | 
 |       * \sa factorize() | 
 |       */ | 
 |     void analyzePattern(const MatrixType& a) | 
 |     { | 
 |       Base::analyzePattern(a, m_LDLT); | 
 |     } | 
 |  | 
 |     /** Performs a numeric decomposition of \a matrix | 
 |       * | 
 |       * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
 |       * | 
 |       * \sa analyzePattern() | 
 |       */ | 
 |     void factorize(const MatrixType& a) | 
 |     { | 
 |       if(m_LDLT) | 
 |         Base::template factorize<true>(a); | 
 |       else | 
 |         Base::template factorize<false>(a); | 
 |     } | 
 |  | 
 |     /** \internal */ | 
 |     template<typename Rhs,typename Dest> | 
 |     void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const | 
 |     { | 
 |       eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); | 
 |       eigen_assert(Base::m_matrix.rows()==b.rows()); | 
 |  | 
 |       if(Base::m_info!=Success) | 
 |         return; | 
 |  | 
 |       if(Base::m_P.size()>0) | 
 |         dest = Base::m_P * b; | 
 |       else | 
 |         dest = b; | 
 |  | 
 |       if(Base::m_matrix.nonZeros()>0) // otherwise L==I | 
 |       { | 
 |         if(m_LDLT) | 
 |           LDLTTraits::getL(Base::m_matrix).solveInPlace(dest); | 
 |         else | 
 |           LLTTraits::getL(Base::m_matrix).solveInPlace(dest); | 
 |       } | 
 |  | 
 |       if(Base::m_diag.size()>0) | 
 |         dest = Base::m_diag.real().asDiagonal().inverse() * dest; | 
 |  | 
 |       if (Base::m_matrix.nonZeros()>0) // otherwise I==I | 
 |       { | 
 |         if(m_LDLT) | 
 |           LDLTTraits::getU(Base::m_matrix).solveInPlace(dest); | 
 |         else | 
 |           LLTTraits::getU(Base::m_matrix).solveInPlace(dest); | 
 |       } | 
 |  | 
 |       if(Base::m_P.size()>0) | 
 |         dest = Base::m_Pinv * dest; | 
 |     } | 
 |      | 
 |     /** \internal */ | 
 |     template<typename Rhs,typename Dest> | 
 |     void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const | 
 |     { | 
 |       internal::solve_sparse_through_dense_panels(*this, b, dest); | 
 |     } | 
 |      | 
 |     Scalar determinant() const | 
 |     { | 
 |       if(m_LDLT) | 
 |       { | 
 |         return Base::m_diag.prod(); | 
 |       } | 
 |       else | 
 |       { | 
 |         Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod(); | 
 |         return numext::abs2(detL); | 
 |       } | 
 |     } | 
 |      | 
 |   protected: | 
 |     bool m_LDLT; | 
 | }; | 
 |  | 
 | template<typename Derived> | 
 | void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap) | 
 | { | 
 |   eigen_assert(a.rows()==a.cols()); | 
 |   const Index size = a.rows(); | 
 |   pmat = ≈ | 
 |   // Note that ordering methods compute the inverse permutation | 
 |   if(!internal::is_same<OrderingType,NaturalOrdering<Index> >::value) | 
 |   { | 
 |     { | 
 |       CholMatrixType C; | 
 |       C = a.template selfadjointView<UpLo>(); | 
 |        | 
 |       OrderingType ordering; | 
 |       ordering(C,m_Pinv); | 
 |     } | 
 |  | 
 |     if(m_Pinv.size()>0) m_P = m_Pinv.inverse(); | 
 |     else                m_P.resize(0); | 
 |      | 
 |     ap.resize(size,size); | 
 |     ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); | 
 |   } | 
 |   else | 
 |   { | 
 |     m_Pinv.resize(0); | 
 |     m_P.resize(0); | 
 |     if(int(UpLo)==int(Lower) || MatrixType::IsRowMajor) | 
 |     { | 
 |       // we have to transpose the lower part to to the upper one | 
 |       ap.resize(size,size); | 
 |       ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>(); | 
 |     } | 
 |     else | 
 |       internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, ap); | 
 |   }   | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_SIMPLICIAL_CHOLESKY_H |