|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SUPERLUSUPPORT_H | 
|  | #define EIGEN_SUPERLUSUPPORT_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | #if defined(SUPERLU_MAJOR_VERSION) && (SUPERLU_MAJOR_VERSION >= 5) | 
|  | #define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE)		\ | 
|  | extern "C" {                                                                                          \ | 
|  | extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *,                  \ | 
|  | char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *,           \ | 
|  | void *, int, SuperMatrix *, SuperMatrix *,                                \ | 
|  | FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *,                       \ | 
|  | GlobalLU_t *, mem_usage_t *, SuperLUStat_t *, int *);                     \ | 
|  | }                                                                                                     \ | 
|  | inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A,                                \ | 
|  | int *perm_c, int *perm_r, int *etree, char *equed,                                               \ | 
|  | FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,                                                      \ | 
|  | SuperMatrix *U, void *work, int lwork,                                                           \ | 
|  | SuperMatrix *B, SuperMatrix *X,                                                                  \ | 
|  | FLOATTYPE *recip_pivot_growth,                                                                   \ | 
|  | FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr,                                              \ | 
|  | SuperLUStat_t *stats, int *info, KEYTYPE) {                                                      \ | 
|  | mem_usage_t mem_usage;                                                                                \ | 
|  | GlobalLU_t gLU;                                                                                       \ | 
|  | PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L,                                      \ | 
|  | U, work, lwork, B, X, recip_pivot_growth, rcond,                                                 \ | 
|  | ferr, berr, &gLU, &mem_usage, stats, info);                                                      \ | 
|  | return mem_usage.for_lu; /* bytes used by the factor storage */                                       \ | 
|  | } | 
|  | #else // version < 5.0 | 
|  | #define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE)		\ | 
|  | extern "C" {                                                                                          \ | 
|  | extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *,                  \ | 
|  | char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *,           \ | 
|  | void *, int, SuperMatrix *, SuperMatrix *,                                \ | 
|  | FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *,                       \ | 
|  | mem_usage_t *, SuperLUStat_t *, int *);                                   \ | 
|  | }                                                                                                     \ | 
|  | inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A,                                \ | 
|  | int *perm_c, int *perm_r, int *etree, char *equed,                                               \ | 
|  | FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,                                                      \ | 
|  | SuperMatrix *U, void *work, int lwork,                                                           \ | 
|  | SuperMatrix *B, SuperMatrix *X,                                                                  \ | 
|  | FLOATTYPE *recip_pivot_growth,                                                                   \ | 
|  | FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr,                                              \ | 
|  | SuperLUStat_t *stats, int *info, KEYTYPE) {                                                      \ | 
|  | mem_usage_t mem_usage;                                                                                \ | 
|  | PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L,                                      \ | 
|  | U, work, lwork, B, X, recip_pivot_growth, rcond,                                                 \ | 
|  | ferr, berr, &mem_usage, stats, info);                                                            \ | 
|  | return mem_usage.for_lu; /* bytes used by the factor storage */                                       \ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | DECL_GSSVX(s,float,float) | 
|  | DECL_GSSVX(c,float,std::complex<float>) | 
|  | DECL_GSSVX(d,double,double) | 
|  | DECL_GSSVX(z,double,std::complex<double>) | 
|  |  | 
|  | #ifdef MILU_ALPHA | 
|  | #define EIGEN_SUPERLU_HAS_ILU | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_SUPERLU_HAS_ILU | 
|  |  | 
|  | // similarly for the incomplete factorization using gsisx | 
|  | #define DECL_GSISX(PREFIX,FLOATTYPE,KEYTYPE)                                                    \ | 
|  | extern "C" {                                                                                \ | 
|  | extern void PREFIX##gsisx(superlu_options_t *, SuperMatrix *, int *, int *, int *,        \ | 
|  | char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *,        \ | 
|  | void *, int, SuperMatrix *, SuperMatrix *, FLOATTYPE *, FLOATTYPE *,   \ | 
|  | mem_usage_t *, SuperLUStat_t *, int *);                        \ | 
|  | }                                                                                           \ | 
|  | inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A,                      \ | 
|  | int *perm_c, int *perm_r, int *etree, char *equed,                                     \ | 
|  | FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,                                            \ | 
|  | SuperMatrix *U, void *work, int lwork,                                                 \ | 
|  | SuperMatrix *B, SuperMatrix *X,                                                        \ | 
|  | FLOATTYPE *recip_pivot_growth,                                                         \ | 
|  | FLOATTYPE *rcond,                                                                      \ | 
|  | SuperLUStat_t *stats, int *info, KEYTYPE) {                                            \ | 
|  | mem_usage_t mem_usage;                                                              \ | 
|  | PREFIX##gsisx(options, A, perm_c, perm_r, etree, equed, R, C, L,                            \ | 
|  | U, work, lwork, B, X, recip_pivot_growth, rcond,                                       \ | 
|  | &mem_usage, stats, info);                                                              \ | 
|  | return mem_usage.for_lu; /* bytes used by the factor storage */                             \ | 
|  | } | 
|  |  | 
|  | DECL_GSISX(s,float,float) | 
|  | DECL_GSISX(c,float,std::complex<float>) | 
|  | DECL_GSISX(d,double,double) | 
|  | DECL_GSISX(z,double,std::complex<double>) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | template<typename MatrixType> | 
|  | struct SluMatrixMapHelper; | 
|  |  | 
|  | /** \internal | 
|  | * | 
|  | * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices | 
|  | * and dense matrices. Supernodal and other fancy format are not supported by this wrapper. | 
|  | * | 
|  | * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure. | 
|  | */ | 
|  | struct SluMatrix : SuperMatrix | 
|  | { | 
|  | SluMatrix() | 
|  | { | 
|  | Store = &storage; | 
|  | } | 
|  |  | 
|  | SluMatrix(const SluMatrix& other) | 
|  | : SuperMatrix(other) | 
|  | { | 
|  | Store = &storage; | 
|  | storage = other.storage; | 
|  | } | 
|  |  | 
|  | SluMatrix& operator=(const SluMatrix& other) | 
|  | { | 
|  | SuperMatrix::operator=(static_cast<const SuperMatrix&>(other)); | 
|  | Store = &storage; | 
|  | storage = other.storage; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | struct | 
|  | { | 
|  | union {int nnz;int lda;}; | 
|  | void *values; | 
|  | int *innerInd; | 
|  | int *outerInd; | 
|  | } storage; | 
|  |  | 
|  | void setStorageType(Stype_t t) | 
|  | { | 
|  | Stype = t; | 
|  | if (t==SLU_NC || t==SLU_NR || t==SLU_DN) | 
|  | Store = &storage; | 
|  | else | 
|  | { | 
|  | eigen_assert(false && "storage type not supported"); | 
|  | Store = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | void setScalarType() | 
|  | { | 
|  | if (internal::is_same<Scalar,float>::value) | 
|  | Dtype = SLU_S; | 
|  | else if (internal::is_same<Scalar,double>::value) | 
|  | Dtype = SLU_D; | 
|  | else if (internal::is_same<Scalar,std::complex<float> >::value) | 
|  | Dtype = SLU_C; | 
|  | else if (internal::is_same<Scalar,std::complex<double> >::value) | 
|  | Dtype = SLU_Z; | 
|  | else | 
|  | { | 
|  | eigen_assert(false && "Scalar type not supported by SuperLU"); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | static SluMatrix Map(MatrixBase<MatrixType>& _mat) | 
|  | { | 
|  | MatrixType& mat(_mat.derived()); | 
|  | eigen_assert( ((MatrixType::Flags&RowMajorBit)!=RowMajorBit) && "row-major dense matrices are not supported by SuperLU"); | 
|  | SluMatrix res; | 
|  | res.setStorageType(SLU_DN); | 
|  | res.setScalarType<typename MatrixType::Scalar>(); | 
|  | res.Mtype     = SLU_GE; | 
|  |  | 
|  | res.nrow      = internal::convert_index<int>(mat.rows()); | 
|  | res.ncol      = internal::convert_index<int>(mat.cols()); | 
|  |  | 
|  | res.storage.lda       = internal::convert_index<int>(MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride()); | 
|  | res.storage.values    = (void*)(mat.data()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | static SluMatrix Map(SparseMatrixBase<MatrixType>& a_mat) | 
|  | { | 
|  | MatrixType &mat(a_mat.derived()); | 
|  | SluMatrix res; | 
|  | if ((MatrixType::Flags&RowMajorBit)==RowMajorBit) | 
|  | { | 
|  | res.setStorageType(SLU_NR); | 
|  | res.nrow      = internal::convert_index<int>(mat.cols()); | 
|  | res.ncol      = internal::convert_index<int>(mat.rows()); | 
|  | } | 
|  | else | 
|  | { | 
|  | res.setStorageType(SLU_NC); | 
|  | res.nrow      = internal::convert_index<int>(mat.rows()); | 
|  | res.ncol      = internal::convert_index<int>(mat.cols()); | 
|  | } | 
|  |  | 
|  | res.Mtype       = SLU_GE; | 
|  |  | 
|  | res.storage.nnz       = internal::convert_index<int>(mat.nonZeros()); | 
|  | res.storage.values    = mat.valuePtr(); | 
|  | res.storage.innerInd  = mat.innerIndexPtr(); | 
|  | res.storage.outerInd  = mat.outerIndexPtr(); | 
|  |  | 
|  | res.setScalarType<typename MatrixType::Scalar>(); | 
|  |  | 
|  | // FIXME the following is not very accurate | 
|  | if (MatrixType::Flags & Upper) | 
|  | res.Mtype = SLU_TRU; | 
|  | if (MatrixType::Flags & Lower) | 
|  | res.Mtype = SLU_TRL; | 
|  |  | 
|  | eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU"); | 
|  |  | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols> | 
|  | struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> > | 
|  | { | 
|  | typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType; | 
|  | static void run(MatrixType& mat, SluMatrix& res) | 
|  | { | 
|  | eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU"); | 
|  | res.setStorageType(SLU_DN); | 
|  | res.setScalarType<Scalar>(); | 
|  | res.Mtype     = SLU_GE; | 
|  |  | 
|  | res.nrow      = mat.rows(); | 
|  | res.ncol      = mat.cols(); | 
|  |  | 
|  | res.storage.lda       = mat.outerStride(); | 
|  | res.storage.values    = mat.data(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived> | 
|  | struct SluMatrixMapHelper<SparseMatrixBase<Derived> > | 
|  | { | 
|  | typedef Derived MatrixType; | 
|  | static void run(MatrixType& mat, SluMatrix& res) | 
|  | { | 
|  | if ((MatrixType::Flags&RowMajorBit)==RowMajorBit) | 
|  | { | 
|  | res.setStorageType(SLU_NR); | 
|  | res.nrow      = mat.cols(); | 
|  | res.ncol      = mat.rows(); | 
|  | } | 
|  | else | 
|  | { | 
|  | res.setStorageType(SLU_NC); | 
|  | res.nrow      = mat.rows(); | 
|  | res.ncol      = mat.cols(); | 
|  | } | 
|  |  | 
|  | res.Mtype       = SLU_GE; | 
|  |  | 
|  | res.storage.nnz       = mat.nonZeros(); | 
|  | res.storage.values    = mat.valuePtr(); | 
|  | res.storage.innerInd  = mat.innerIndexPtr(); | 
|  | res.storage.outerInd  = mat.outerIndexPtr(); | 
|  |  | 
|  | res.setScalarType<typename MatrixType::Scalar>(); | 
|  |  | 
|  | // FIXME the following is not very accurate | 
|  | if (MatrixType::Flags & Upper) | 
|  | res.Mtype = SLU_TRU; | 
|  | if (MatrixType::Flags & Lower) | 
|  | res.Mtype = SLU_TRL; | 
|  |  | 
|  | eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename MatrixType> | 
|  | SluMatrix asSluMatrix(MatrixType& mat) | 
|  | { | 
|  | return SluMatrix::Map(mat); | 
|  | } | 
|  |  | 
|  | /** View a Super LU matrix as an Eigen expression */ | 
|  | template<typename Scalar, int Flags, typename Index> | 
|  | MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat) | 
|  | { | 
|  | eigen_assert(((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR) | 
|  | || ((Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC)); | 
|  |  | 
|  | Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow; | 
|  |  | 
|  | return MappedSparseMatrix<Scalar,Flags,Index>( | 
|  | sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize], | 
|  | sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast<Scalar*>(sluMat.storage.values) ); | 
|  | } | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \ingroup SuperLUSupport_Module | 
|  | * \class SuperLUBase | 
|  | * \brief The base class for the direct and incomplete LU factorization of SuperLU | 
|  | */ | 
|  | template<typename _MatrixType, typename Derived> | 
|  | class SuperLUBase : public SparseSolverBase<Derived> | 
|  | { | 
|  | protected: | 
|  | typedef SparseSolverBase<Derived> Base; | 
|  | using Base::derived; | 
|  | using Base::m_isInitialized; | 
|  | public: | 
|  | typedef _MatrixType MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef Matrix<Scalar,Dynamic,1> Vector; | 
|  | typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
|  | typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
|  | typedef Map<PermutationMatrix<Dynamic,Dynamic,int> > PermutationMap; | 
|  | typedef SparseMatrix<Scalar> LUMatrixType; | 
|  | enum { | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | public: | 
|  |  | 
|  | SuperLUBase() {} | 
|  |  | 
|  | ~SuperLUBase() | 
|  | { | 
|  | clearFactors(); | 
|  | } | 
|  |  | 
|  | inline Index rows() const { return m_matrix.rows(); } | 
|  | inline Index cols() const { return m_matrix.cols(); } | 
|  |  | 
|  | /** \returns a reference to the Super LU option object to configure the  Super LU algorithms. */ | 
|  | inline superlu_options_t& options() { return m_sluOptions; } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, | 
|  | *          \c NumericalIssue if the matrix.appears to be negative. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** Computes the sparse Cholesky decomposition of \a matrix */ | 
|  | void compute(const MatrixType& matrix) | 
|  | { | 
|  | derived().analyzePattern(matrix); | 
|  | derived().factorize(matrix); | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& /*matrix*/) | 
|  | { | 
|  | m_isInitialized = true; | 
|  | m_info = Success; | 
|  | m_analysisIsOk = true; | 
|  | m_factorizationIsOk = false; | 
|  | } | 
|  |  | 
|  | template<typename Stream> | 
|  | void dumpMemory(Stream& /*s*/) | 
|  | {} | 
|  |  | 
|  | protected: | 
|  |  | 
|  | void initFactorization(const MatrixType& a) | 
|  | { | 
|  | set_default_options(&this->m_sluOptions); | 
|  |  | 
|  | const Index size = a.rows(); | 
|  | m_matrix = a; | 
|  |  | 
|  | m_sluA = internal::asSluMatrix(m_matrix); | 
|  | clearFactors(); | 
|  |  | 
|  | m_p.resize(size); | 
|  | m_q.resize(size); | 
|  | m_sluRscale.resize(size); | 
|  | m_sluCscale.resize(size); | 
|  | m_sluEtree.resize(size); | 
|  |  | 
|  | // set empty B and X | 
|  | m_sluB.setStorageType(SLU_DN); | 
|  | m_sluB.setScalarType<Scalar>(); | 
|  | m_sluB.Mtype          = SLU_GE; | 
|  | m_sluB.storage.values = 0; | 
|  | m_sluB.nrow           = 0; | 
|  | m_sluB.ncol           = 0; | 
|  | m_sluB.storage.lda    = internal::convert_index<int>(size); | 
|  | m_sluX                = m_sluB; | 
|  |  | 
|  | m_extractedDataAreDirty = true; | 
|  | } | 
|  |  | 
|  | void init() | 
|  | { | 
|  | m_info = InvalidInput; | 
|  | m_isInitialized = false; | 
|  | m_sluL.Store = 0; | 
|  | m_sluU.Store = 0; | 
|  | } | 
|  |  | 
|  | void extractData() const; | 
|  |  | 
|  | void clearFactors() | 
|  | { | 
|  | if(m_sluL.Store) | 
|  | Destroy_SuperNode_Matrix(&m_sluL); | 
|  | if(m_sluU.Store) | 
|  | Destroy_CompCol_Matrix(&m_sluU); | 
|  |  | 
|  | m_sluL.Store = 0; | 
|  | m_sluU.Store = 0; | 
|  |  | 
|  | memset(&m_sluL,0,sizeof m_sluL); | 
|  | memset(&m_sluU,0,sizeof m_sluU); | 
|  | } | 
|  |  | 
|  | // cached data to reduce reallocation, etc. | 
|  | mutable LUMatrixType m_l; | 
|  | mutable LUMatrixType m_u; | 
|  | mutable IntColVectorType m_p; | 
|  | mutable IntRowVectorType m_q; | 
|  |  | 
|  | mutable LUMatrixType m_matrix;  // copy of the factorized matrix | 
|  | mutable SluMatrix m_sluA; | 
|  | mutable SuperMatrix m_sluL, m_sluU; | 
|  | mutable SluMatrix m_sluB, m_sluX; | 
|  | mutable SuperLUStat_t m_sluStat; | 
|  | mutable superlu_options_t m_sluOptions; | 
|  | mutable std::vector<int> m_sluEtree; | 
|  | mutable Matrix<RealScalar,Dynamic,1> m_sluRscale, m_sluCscale; | 
|  | mutable Matrix<RealScalar,Dynamic,1> m_sluFerr, m_sluBerr; | 
|  | mutable char m_sluEqued; | 
|  |  | 
|  | mutable ComputationInfo m_info; | 
|  | int m_factorizationIsOk; | 
|  | int m_analysisIsOk; | 
|  | mutable bool m_extractedDataAreDirty; | 
|  |  | 
|  | private: | 
|  | SuperLUBase(SuperLUBase& ) { } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** \ingroup SuperLUSupport_Module | 
|  | * \class SuperLU | 
|  | * \brief A sparse direct LU factorization and solver based on the SuperLU library | 
|  | * | 
|  | * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization | 
|  | * using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices | 
|  | * X and B can be either dense or sparse. | 
|  | * | 
|  | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * | 
|  | * \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported. | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa \ref TutorialSparseSolverConcept, class SparseLU | 
|  | */ | 
|  | template<typename _MatrixType> | 
|  | class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> > | 
|  | { | 
|  | public: | 
|  | typedef SuperLUBase<_MatrixType,SuperLU> Base; | 
|  | typedef _MatrixType MatrixType; | 
|  | typedef typename Base::Scalar Scalar; | 
|  | typedef typename Base::RealScalar RealScalar; | 
|  | typedef typename Base::StorageIndex StorageIndex; | 
|  | typedef typename Base::IntRowVectorType IntRowVectorType; | 
|  | typedef typename Base::IntColVectorType IntColVectorType; | 
|  | typedef typename Base::PermutationMap PermutationMap; | 
|  | typedef typename Base::LUMatrixType LUMatrixType; | 
|  | typedef TriangularView<LUMatrixType, Lower|UnitDiag>  LMatrixType; | 
|  | typedef TriangularView<LUMatrixType,  Upper>          UMatrixType; | 
|  |  | 
|  | public: | 
|  | using Base::_solve_impl; | 
|  |  | 
|  | SuperLU() : Base() { init(); } | 
|  |  | 
|  | explicit SuperLU(const MatrixType& matrix) : Base() | 
|  | { | 
|  | init(); | 
|  | Base::compute(matrix); | 
|  | } | 
|  |  | 
|  | ~SuperLU() | 
|  | { | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& matrix) | 
|  | { | 
|  | m_info = InvalidInput; | 
|  | m_isInitialized = false; | 
|  | Base::analyzePattern(matrix); | 
|  | } | 
|  |  | 
|  | /** Performs a numeric decomposition of \a matrix | 
|  | * | 
|  | * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
|  | * | 
|  | * \sa analyzePattern() | 
|  | */ | 
|  | void factorize(const MatrixType& matrix); | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const; | 
|  |  | 
|  | inline const LMatrixType& matrixL() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) this->extractData(); | 
|  | return m_l; | 
|  | } | 
|  |  | 
|  | inline const UMatrixType& matrixU() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) this->extractData(); | 
|  | return m_u; | 
|  | } | 
|  |  | 
|  | inline const IntColVectorType& permutationP() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) this->extractData(); | 
|  | return m_p; | 
|  | } | 
|  |  | 
|  | inline const IntRowVectorType& permutationQ() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) this->extractData(); | 
|  | return m_q; | 
|  | } | 
|  |  | 
|  | Scalar determinant() const; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | using Base::m_matrix; | 
|  | using Base::m_sluOptions; | 
|  | using Base::m_sluA; | 
|  | using Base::m_sluB; | 
|  | using Base::m_sluX; | 
|  | using Base::m_p; | 
|  | using Base::m_q; | 
|  | using Base::m_sluEtree; | 
|  | using Base::m_sluEqued; | 
|  | using Base::m_sluRscale; | 
|  | using Base::m_sluCscale; | 
|  | using Base::m_sluL; | 
|  | using Base::m_sluU; | 
|  | using Base::m_sluStat; | 
|  | using Base::m_sluFerr; | 
|  | using Base::m_sluBerr; | 
|  | using Base::m_l; | 
|  | using Base::m_u; | 
|  |  | 
|  | using Base::m_analysisIsOk; | 
|  | using Base::m_factorizationIsOk; | 
|  | using Base::m_extractedDataAreDirty; | 
|  | using Base::m_isInitialized; | 
|  | using Base::m_info; | 
|  |  | 
|  | void init() | 
|  | { | 
|  | Base::init(); | 
|  |  | 
|  | set_default_options(&this->m_sluOptions); | 
|  | m_sluOptions.PrintStat        = NO; | 
|  | m_sluOptions.ConditionNumber  = NO; | 
|  | m_sluOptions.Trans            = NOTRANS; | 
|  | m_sluOptions.ColPerm          = COLAMD; | 
|  | } | 
|  |  | 
|  |  | 
|  | private: | 
|  | SuperLU(SuperLU& ) { } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void SuperLU<MatrixType>::factorize(const MatrixType& a) | 
|  | { | 
|  | eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); | 
|  | if(!m_analysisIsOk) | 
|  | { | 
|  | m_info = InvalidInput; | 
|  | return; | 
|  | } | 
|  |  | 
|  | this->initFactorization(a); | 
|  |  | 
|  | m_sluOptions.ColPerm = COLAMD; | 
|  | int info = 0; | 
|  | RealScalar recip_pivot_growth, rcond; | 
|  | RealScalar ferr, berr; | 
|  |  | 
|  | StatInit(&m_sluStat); | 
|  | SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0], | 
|  | &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0], | 
|  | &m_sluL, &m_sluU, | 
|  | NULL, 0, | 
|  | &m_sluB, &m_sluX, | 
|  | &recip_pivot_growth, &rcond, | 
|  | &ferr, &berr, | 
|  | &m_sluStat, &info, Scalar()); | 
|  | StatFree(&m_sluStat); | 
|  |  | 
|  | m_extractedDataAreDirty = true; | 
|  |  | 
|  | // FIXME how to better check for errors ??? | 
|  | m_info = info == 0 ? Success : NumericalIssue; | 
|  | m_factorizationIsOk = true; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | template<typename Rhs,typename Dest> | 
|  | void SuperLU<MatrixType>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const | 
|  | { | 
|  | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()"); | 
|  |  | 
|  | const Index size = m_matrix.rows(); | 
|  | const Index rhsCols = b.cols(); | 
|  | eigen_assert(size==b.rows()); | 
|  |  | 
|  | m_sluOptions.Trans = NOTRANS; | 
|  | m_sluOptions.Fact = FACTORED; | 
|  | m_sluOptions.IterRefine = NOREFINE; | 
|  |  | 
|  |  | 
|  | m_sluFerr.resize(rhsCols); | 
|  | m_sluBerr.resize(rhsCols); | 
|  |  | 
|  | Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b); | 
|  | Ref<const Matrix<typename Dest::Scalar,Dynamic,Dynamic,ColMajor> > x_ref(x); | 
|  |  | 
|  | m_sluB = SluMatrix::Map(b_ref.const_cast_derived()); | 
|  | m_sluX = SluMatrix::Map(x_ref.const_cast_derived()); | 
|  |  | 
|  | typename Rhs::PlainObject b_cpy; | 
|  | if(m_sluEqued!='N') | 
|  | { | 
|  | b_cpy = b; | 
|  | m_sluB = SluMatrix::Map(b_cpy.const_cast_derived()); | 
|  | } | 
|  |  | 
|  | StatInit(&m_sluStat); | 
|  | int info = 0; | 
|  | RealScalar recip_pivot_growth, rcond; | 
|  | SuperLU_gssvx(&m_sluOptions, &m_sluA, | 
|  | m_q.data(), m_p.data(), | 
|  | &m_sluEtree[0], &m_sluEqued, | 
|  | &m_sluRscale[0], &m_sluCscale[0], | 
|  | &m_sluL, &m_sluU, | 
|  | NULL, 0, | 
|  | &m_sluB, &m_sluX, | 
|  | &recip_pivot_growth, &rcond, | 
|  | &m_sluFerr[0], &m_sluBerr[0], | 
|  | &m_sluStat, &info, Scalar()); | 
|  | StatFree(&m_sluStat); | 
|  |  | 
|  | if(x.derived().data() != x_ref.data()) | 
|  | x = x_ref; | 
|  |  | 
|  | m_info = info==0 ? Success : NumericalIssue; | 
|  | } | 
|  |  | 
|  | // the code of this extractData() function has been adapted from the SuperLU's Matlab support code, | 
|  | // | 
|  | //  Copyright (c) 1994 by Xerox Corporation.  All rights reserved. | 
|  | // | 
|  | //  THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY | 
|  | //  EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK. | 
|  | // | 
|  | template<typename MatrixType, typename Derived> | 
|  | void SuperLUBase<MatrixType,Derived>::extractData() const | 
|  | { | 
|  | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for extracting factors, you must first call either compute() or analyzePattern()/factorize()"); | 
|  | if (m_extractedDataAreDirty) | 
|  | { | 
|  | int         upper; | 
|  | int         fsupc, istart, nsupr; | 
|  | int         lastl = 0, lastu = 0; | 
|  | SCformat    *Lstore = static_cast<SCformat*>(m_sluL.Store); | 
|  | NCformat    *Ustore = static_cast<NCformat*>(m_sluU.Store); | 
|  | Scalar      *SNptr; | 
|  |  | 
|  | const Index size = m_matrix.rows(); | 
|  | m_l.resize(size,size); | 
|  | m_l.resizeNonZeros(Lstore->nnz); | 
|  | m_u.resize(size,size); | 
|  | m_u.resizeNonZeros(Ustore->nnz); | 
|  |  | 
|  | int* Lcol = m_l.outerIndexPtr(); | 
|  | int* Lrow = m_l.innerIndexPtr(); | 
|  | Scalar* Lval = m_l.valuePtr(); | 
|  |  | 
|  | int* Ucol = m_u.outerIndexPtr(); | 
|  | int* Urow = m_u.innerIndexPtr(); | 
|  | Scalar* Uval = m_u.valuePtr(); | 
|  |  | 
|  | Ucol[0] = 0; | 
|  | Ucol[0] = 0; | 
|  |  | 
|  | /* for each supernode */ | 
|  | for (int k = 0; k <= Lstore->nsuper; ++k) | 
|  | { | 
|  | fsupc   = L_FST_SUPC(k); | 
|  | istart  = L_SUB_START(fsupc); | 
|  | nsupr   = L_SUB_START(fsupc+1) - istart; | 
|  | upper   = 1; | 
|  |  | 
|  | /* for each column in the supernode */ | 
|  | for (int j = fsupc; j < L_FST_SUPC(k+1); ++j) | 
|  | { | 
|  | SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)]; | 
|  |  | 
|  | /* Extract U */ | 
|  | for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i) | 
|  | { | 
|  | Uval[lastu] = ((Scalar*)Ustore->nzval)[i]; | 
|  | /* Matlab doesn't like explicit zero. */ | 
|  | if (Uval[lastu] != 0.0) | 
|  | Urow[lastu++] = U_SUB(i); | 
|  | } | 
|  | for (int i = 0; i < upper; ++i) | 
|  | { | 
|  | /* upper triangle in the supernode */ | 
|  | Uval[lastu] = SNptr[i]; | 
|  | /* Matlab doesn't like explicit zero. */ | 
|  | if (Uval[lastu] != 0.0) | 
|  | Urow[lastu++] = L_SUB(istart+i); | 
|  | } | 
|  | Ucol[j+1] = lastu; | 
|  |  | 
|  | /* Extract L */ | 
|  | Lval[lastl] = 1.0; /* unit diagonal */ | 
|  | Lrow[lastl++] = L_SUB(istart + upper - 1); | 
|  | for (int i = upper; i < nsupr; ++i) | 
|  | { | 
|  | Lval[lastl] = SNptr[i]; | 
|  | /* Matlab doesn't like explicit zero. */ | 
|  | if (Lval[lastl] != 0.0) | 
|  | Lrow[lastl++] = L_SUB(istart+i); | 
|  | } | 
|  | Lcol[j+1] = lastl; | 
|  |  | 
|  | ++upper; | 
|  | } /* for j ... */ | 
|  |  | 
|  | } /* for k ... */ | 
|  |  | 
|  | // squeeze the matrices : | 
|  | m_l.resizeNonZeros(lastl); | 
|  | m_u.resizeNonZeros(lastu); | 
|  |  | 
|  | m_extractedDataAreDirty = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename SuperLU<MatrixType>::Scalar SuperLU<MatrixType>::determinant() const | 
|  | { | 
|  | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for computing the determinant, you must first call either compute() or analyzePattern()/factorize()"); | 
|  |  | 
|  | if (m_extractedDataAreDirty) | 
|  | this->extractData(); | 
|  |  | 
|  | Scalar det = Scalar(1); | 
|  | for (int j=0; j<m_u.cols(); ++j) | 
|  | { | 
|  | if (m_u.outerIndexPtr()[j+1]-m_u.outerIndexPtr()[j] > 0) | 
|  | { | 
|  | int lastId = m_u.outerIndexPtr()[j+1]-1; | 
|  | eigen_assert(m_u.innerIndexPtr()[lastId]<=j); | 
|  | if (m_u.innerIndexPtr()[lastId]==j) | 
|  | det *= m_u.valuePtr()[lastId]; | 
|  | } | 
|  | } | 
|  | if(PermutationMap(m_p.data(),m_p.size()).determinant()*PermutationMap(m_q.data(),m_q.size()).determinant()<0) | 
|  | det = -det; | 
|  | if(m_sluEqued!='N') | 
|  | return det/m_sluRscale.prod()/m_sluCscale.prod(); | 
|  | else | 
|  | return det; | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | #define EIGEN_SUPERLU_HAS_ILU | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_SUPERLU_HAS_ILU | 
|  |  | 
|  | /** \ingroup SuperLUSupport_Module | 
|  | * \class SuperILU | 
|  | * \brief A sparse direct \b incomplete LU factorization and solver based on the SuperLU library | 
|  | * | 
|  | * This class allows to solve for an approximate solution of A.X = B sparse linear problems via an incomplete LU factorization | 
|  | * using the SuperLU library. This class is aimed to be used as a preconditioner of the iterative linear solvers. | 
|  | * | 
|  | * \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported. | 
|  | * | 
|  | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa \ref TutorialSparseSolverConcept, class IncompleteLUT, class ConjugateGradient, class BiCGSTAB | 
|  | */ | 
|  |  | 
|  | template<typename _MatrixType> | 
|  | class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> > | 
|  | { | 
|  | public: | 
|  | typedef SuperLUBase<_MatrixType,SuperILU> Base; | 
|  | typedef _MatrixType MatrixType; | 
|  | typedef typename Base::Scalar Scalar; | 
|  | typedef typename Base::RealScalar RealScalar; | 
|  |  | 
|  | public: | 
|  | using Base::_solve_impl; | 
|  |  | 
|  | SuperILU() : Base() { init(); } | 
|  |  | 
|  | SuperILU(const MatrixType& matrix) : Base() | 
|  | { | 
|  | init(); | 
|  | Base::compute(matrix); | 
|  | } | 
|  |  | 
|  | ~SuperILU() | 
|  | { | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& matrix) | 
|  | { | 
|  | Base::analyzePattern(matrix); | 
|  | } | 
|  |  | 
|  | /** Performs a numeric decomposition of \a matrix | 
|  | * | 
|  | * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
|  | * | 
|  | * \sa analyzePattern() | 
|  | */ | 
|  | void factorize(const MatrixType& matrix); | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const; | 
|  | #endif // EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  | protected: | 
|  |  | 
|  | using Base::m_matrix; | 
|  | using Base::m_sluOptions; | 
|  | using Base::m_sluA; | 
|  | using Base::m_sluB; | 
|  | using Base::m_sluX; | 
|  | using Base::m_p; | 
|  | using Base::m_q; | 
|  | using Base::m_sluEtree; | 
|  | using Base::m_sluEqued; | 
|  | using Base::m_sluRscale; | 
|  | using Base::m_sluCscale; | 
|  | using Base::m_sluL; | 
|  | using Base::m_sluU; | 
|  | using Base::m_sluStat; | 
|  | using Base::m_sluFerr; | 
|  | using Base::m_sluBerr; | 
|  | using Base::m_l; | 
|  | using Base::m_u; | 
|  |  | 
|  | using Base::m_analysisIsOk; | 
|  | using Base::m_factorizationIsOk; | 
|  | using Base::m_extractedDataAreDirty; | 
|  | using Base::m_isInitialized; | 
|  | using Base::m_info; | 
|  |  | 
|  | void init() | 
|  | { | 
|  | Base::init(); | 
|  |  | 
|  | ilu_set_default_options(&m_sluOptions); | 
|  | m_sluOptions.PrintStat        = NO; | 
|  | m_sluOptions.ConditionNumber  = NO; | 
|  | m_sluOptions.Trans            = NOTRANS; | 
|  | m_sluOptions.ColPerm          = MMD_AT_PLUS_A; | 
|  |  | 
|  | // no attempt to preserve column sum | 
|  | m_sluOptions.ILU_MILU = SILU; | 
|  | // only basic ILU(k) support -- no direct control over memory consumption | 
|  | // better to use ILU_DropRule = DROP_BASIC | DROP_AREA | 
|  | // and set ILU_FillFactor to max memory growth | 
|  | m_sluOptions.ILU_DropRule = DROP_BASIC; | 
|  | m_sluOptions.ILU_DropTol = NumTraits<Scalar>::dummy_precision()*10; | 
|  | } | 
|  |  | 
|  | private: | 
|  | SuperILU(SuperILU& ) { } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void SuperILU<MatrixType>::factorize(const MatrixType& a) | 
|  | { | 
|  | eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); | 
|  | if(!m_analysisIsOk) | 
|  | { | 
|  | m_info = InvalidInput; | 
|  | return; | 
|  | } | 
|  |  | 
|  | this->initFactorization(a); | 
|  |  | 
|  | int info = 0; | 
|  | RealScalar recip_pivot_growth, rcond; | 
|  |  | 
|  | StatInit(&m_sluStat); | 
|  | SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0], | 
|  | &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0], | 
|  | &m_sluL, &m_sluU, | 
|  | NULL, 0, | 
|  | &m_sluB, &m_sluX, | 
|  | &recip_pivot_growth, &rcond, | 
|  | &m_sluStat, &info, Scalar()); | 
|  | StatFree(&m_sluStat); | 
|  |  | 
|  | // FIXME how to better check for errors ??? | 
|  | m_info = info == 0 ? Success : NumericalIssue; | 
|  | m_factorizationIsOk = true; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename MatrixType> | 
|  | template<typename Rhs,typename Dest> | 
|  | void SuperILU<MatrixType>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const | 
|  | { | 
|  | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()"); | 
|  |  | 
|  | const int size = m_matrix.rows(); | 
|  | const int rhsCols = b.cols(); | 
|  | eigen_assert(size==b.rows()); | 
|  |  | 
|  | m_sluOptions.Trans = NOTRANS; | 
|  | m_sluOptions.Fact = FACTORED; | 
|  | m_sluOptions.IterRefine = NOREFINE; | 
|  |  | 
|  | m_sluFerr.resize(rhsCols); | 
|  | m_sluBerr.resize(rhsCols); | 
|  |  | 
|  | Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b); | 
|  | Ref<const Matrix<typename Dest::Scalar,Dynamic,Dynamic,ColMajor> > x_ref(x); | 
|  |  | 
|  | m_sluB = SluMatrix::Map(b_ref.const_cast_derived()); | 
|  | m_sluX = SluMatrix::Map(x_ref.const_cast_derived()); | 
|  |  | 
|  | typename Rhs::PlainObject b_cpy; | 
|  | if(m_sluEqued!='N') | 
|  | { | 
|  | b_cpy = b; | 
|  | m_sluB = SluMatrix::Map(b_cpy.const_cast_derived()); | 
|  | } | 
|  |  | 
|  | int info = 0; | 
|  | RealScalar recip_pivot_growth, rcond; | 
|  |  | 
|  | StatInit(&m_sluStat); | 
|  | SuperLU_gsisx(&m_sluOptions, &m_sluA, | 
|  | m_q.data(), m_p.data(), | 
|  | &m_sluEtree[0], &m_sluEqued, | 
|  | &m_sluRscale[0], &m_sluCscale[0], | 
|  | &m_sluL, &m_sluU, | 
|  | NULL, 0, | 
|  | &m_sluB, &m_sluX, | 
|  | &recip_pivot_growth, &rcond, | 
|  | &m_sluStat, &info, Scalar()); | 
|  | StatFree(&m_sluStat); | 
|  |  | 
|  | if(x.derived().data() != x_ref.data()) | 
|  | x = x_ref; | 
|  |  | 
|  | m_info = info==0 ? Success : NumericalIssue; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_SUPERLUSUPPORT_H |