|  | // A simple quickref for Eigen. Add anything that's missing. | 
|  | // Main author: Keir Mierle | 
|  |  | 
|  | #include <Eigen/Dense> | 
|  |  | 
|  | Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d. | 
|  | Matrix<double, 3, Dynamic> B;         // Fixed rows, dynamic cols. | 
|  | Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd. | 
|  | Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major. | 
|  | Matrix3f P, Q, R;                     // 3x3 float matrix. | 
|  | Vector3f x, y, z;                     // 3x1 float matrix. | 
|  | RowVector3f a, b, c;                  // 1x3 float matrix. | 
|  | VectorXd v;                           // Dynamic column vector of doubles | 
|  | double s; | 
|  |  | 
|  | // Basic usage | 
|  | // Eigen          // Matlab           // comments | 
|  | x.size()          // length(x)        // vector size | 
|  | C.rows()          // size(C,1)        // number of rows | 
|  | C.cols()          // size(C,2)        // number of columns | 
|  | x(i)              // x(i+1)           // Matlab is 1-based | 
|  | C(i,j)            // C(i+1,j+1)       // | 
|  |  | 
|  | A.resize(4, 4);   // Runtime error if assertions are on. | 
|  | B.resize(4, 9);   // Runtime error if assertions are on. | 
|  | A.resize(3, 3);   // Ok; size didn't change. | 
|  | B.resize(3, 9);   // Ok; only dynamic cols changed. | 
|  |  | 
|  | A << 1, 2, 3,     // Initialize A. The elements can also be | 
|  | 4, 5, 6,     // matrices, which are stacked along cols | 
|  | 7, 8, 9;     // and then the rows are stacked. | 
|  | B << A, A, A;     // B is three horizontally stacked A's. | 
|  | A.fill(10);       // Fill A with all 10's. | 
|  |  | 
|  | // Eigen                                    // Matlab | 
|  | MatrixXd::Identity(rows,cols)               // eye(rows,cols) | 
|  | C.setIdentity(rows,cols)                    // C = eye(rows,cols) | 
|  | MatrixXd::Zero(rows,cols)                   // zeros(rows,cols) | 
|  | C.setZero(rows,cols)                        // C = zeros(rows,cols) | 
|  | MatrixXd::Ones(rows,cols)                   // ones(rows,cols) | 
|  | C.setOnes(rows,cols)                        // C = ones(rows,cols) | 
|  | MatrixXd::Random(rows,cols)                 // rand(rows,cols)*2-1            // MatrixXd::Random returns uniform random numbers in (-1, 1). | 
|  | C.setRandom(rows,cols)                      // C = rand(rows,cols)*2-1 | 
|  | VectorXd::LinSpaced(size,low,high)          // linspace(low,high,size)' | 
|  | v.setLinSpaced(size,low,high)               // v = linspace(low,high,size)' | 
|  | VectorXi::LinSpaced(((hi-low)/step)+1,      // low:step:hi | 
|  | low,low+step*(size-1))  // | 
|  |  | 
|  |  | 
|  | // Matrix slicing and blocks. All expressions listed here are read/write. | 
|  | // Templated size versions are faster. Note that Matlab is 1-based (a size N | 
|  | // vector is x(1)...x(N)). | 
|  | /******************************************************************************/ | 
|  | /*                  PLEASE HELP US IMPROVING THIS SECTION                     */ | 
|  | /* Eigen 3.4 supports a much improved API for sub-matrices, including,        */ | 
|  | /* slicing and indexing from arrays:                                          */ | 
|  | /* http://eigen.tuxfamily.org/dox-devel/group__TutorialSlicingIndexing.html   */ | 
|  | /******************************************************************************/ | 
|  | // Eigen                           // Matlab | 
|  | x.head(n)                          // x(1:n) | 
|  | x.head<n>()                        // x(1:n) | 
|  | x.tail(n)                          // x(end - n + 1: end) | 
|  | x.tail<n>()                        // x(end - n + 1: end) | 
|  | x.segment(i, n)                    // x(i+1 : i+n) | 
|  | x.segment<n>(i)                    // x(i+1 : i+n) | 
|  | P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols) | 
|  | P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols) | 
|  | P.row(i)                           // P(i+1, :) | 
|  | P.col(j)                           // P(:, j+1) | 
|  | P.leftCols<cols>()                 // P(:, 1:cols) | 
|  | P.leftCols(cols)                   // P(:, 1:cols) | 
|  | P.middleCols<cols>(j)              // P(:, j+1:j+cols) | 
|  | P.middleCols(j, cols)              // P(:, j+1:j+cols) | 
|  | P.rightCols<cols>()                // P(:, end-cols+1:end) | 
|  | P.rightCols(cols)                  // P(:, end-cols+1:end) | 
|  | P.topRows<rows>()                  // P(1:rows, :) | 
|  | P.topRows(rows)                    // P(1:rows, :) | 
|  | P.middleRows<rows>(i)              // P(i+1:i+rows, :) | 
|  | P.middleRows(i, rows)              // P(i+1:i+rows, :) | 
|  | P.bottomRows<rows>()               // P(end-rows+1:end, :) | 
|  | P.bottomRows(rows)                 // P(end-rows+1:end, :) | 
|  | P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols) | 
|  | P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end) | 
|  | P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols) | 
|  | P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end) | 
|  | P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols) | 
|  | P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end) | 
|  | P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols) | 
|  | P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end) | 
|  |  | 
|  | // Of particular note is Eigen's swap function which is highly optimized. | 
|  | // Eigen                           // Matlab | 
|  | R.row(i) = P.col(j);               // R(i, :) = P(:, j) | 
|  | R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1]) | 
|  |  | 
|  | // Views, transpose, etc; | 
|  | /******************************************************************************/ | 
|  | /*                  PLEASE HELP US IMPROVING THIS SECTION                     */ | 
|  | /* Eigen 3.4 supports a new API for reshaping:                                */ | 
|  | /* http://eigen.tuxfamily.org/dox-devel/group__TutorialReshape.html           */ | 
|  | /******************************************************************************/ | 
|  | // Eigen                           // Matlab | 
|  | R.adjoint()                        // R' | 
|  | R.transpose()                      // R.' or conj(R')       // Read-write | 
|  | R.diagonal()                       // diag(R)               // Read-write | 
|  | x.asDiagonal()                     // diag(x) | 
|  | R.transpose().colwise().reverse()  // rot90(R)              // Read-write | 
|  | R.rowwise().reverse()              // fliplr(R) | 
|  | R.colwise().reverse()              // flipud(R) | 
|  | R.replicate(i,j)                   // repmat(P,i,j) | 
|  |  | 
|  |  | 
|  | // All the same as Matlab, but matlab doesn't have *= style operators. | 
|  | // Matrix-vector.  Matrix-matrix.   Matrix-scalar. | 
|  | y  = M*x;          R  = P*Q;        R  = P*s; | 
|  | a  = b*M;          R  = P - Q;      R  = s*P; | 
|  | a *= M;            R  = P + Q;      R  = P/s; | 
|  | R *= Q;          R  = s*P; | 
|  | R += Q;          R *= s; | 
|  | R -= Q;          R /= s; | 
|  |  | 
|  | // Vectorized operations on each element independently | 
|  | // Eigen                       // Matlab | 
|  | R = P.cwiseProduct(Q);         // R = P .* Q | 
|  | R = P.array() * s.array();     // R = P .* s | 
|  | R = P.cwiseQuotient(Q);        // R = P ./ Q | 
|  | R = P.array() / Q.array();     // R = P ./ Q | 
|  | R = P.array() + s.array();     // R = P + s | 
|  | R = P.array() - s.array();     // R = P - s | 
|  | R.array() += s;                // R = R + s | 
|  | R.array() -= s;                // R = R - s | 
|  | R.array() < Q.array();         // R < Q | 
|  | R.array() <= Q.array();        // R <= Q | 
|  | R.cwiseInverse();              // 1 ./ P | 
|  | R.array().inverse();           // 1 ./ P | 
|  | R.array().sin()                // sin(P) | 
|  | R.array().cos()                // cos(P) | 
|  | R.array().pow(s)               // P .^ s | 
|  | R.array().square()             // P .^ 2 | 
|  | R.array().cube()               // P .^ 3 | 
|  | R.cwiseSqrt()                  // sqrt(P) | 
|  | R.array().sqrt()               // sqrt(P) | 
|  | R.array().exp()                // exp(P) | 
|  | R.array().log()                // log(P) | 
|  | R.cwiseMax(P)                  // max(R, P) | 
|  | R.array().max(P.array())       // max(R, P) | 
|  | R.cwiseMin(P)                  // min(R, P) | 
|  | R.array().min(P.array())       // min(R, P) | 
|  | R.cwiseAbs()                   // abs(P) | 
|  | R.array().abs()                // abs(P) | 
|  | R.cwiseAbs2()                  // abs(P.^2) | 
|  | R.array().abs2()               // abs(P.^2) | 
|  | (R.array() < s).select(P,Q );  // (R < s ? P : Q) | 
|  | R = (Q.array()==0).select(P,R) // R(Q==0) = P(Q==0) | 
|  | R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P)   // with: scalar func(const scalar &x); | 
|  |  | 
|  |  | 
|  | // Reductions. | 
|  | int r, c; | 
|  | // Eigen                  // Matlab | 
|  | R.minCoeff()              // min(R(:)) | 
|  | R.maxCoeff()              // max(R(:)) | 
|  | s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i); | 
|  | s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i); | 
|  | R.sum()                   // sum(R(:)) | 
|  | R.colwise().sum()         // sum(R) | 
|  | R.rowwise().sum()         // sum(R, 2) or sum(R')' | 
|  | R.prod()                  // prod(R(:)) | 
|  | R.colwise().prod()        // prod(R) | 
|  | R.rowwise().prod()        // prod(R, 2) or prod(R')' | 
|  | R.trace()                 // trace(R) | 
|  | R.all()                   // all(R(:)) | 
|  | R.colwise().all()         // all(R) | 
|  | R.rowwise().all()         // all(R, 2) | 
|  | R.any()                   // any(R(:)) | 
|  | R.colwise().any()         // any(R) | 
|  | R.rowwise().any()         // any(R, 2) | 
|  |  | 
|  | // Dot products, norms, etc. | 
|  | // Eigen                  // Matlab | 
|  | x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen. | 
|  | x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex | 
|  | x.dot(y)                  // dot(x, y) | 
|  | x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry> | 
|  |  | 
|  | //// Type conversion | 
|  | // Eigen                  // Matlab | 
|  | A.cast<double>();         // double(A) | 
|  | A.cast<float>();          // single(A) | 
|  | A.cast<int>();            // int32(A) | 
|  | A.real();                 // real(A) | 
|  | A.imag();                 // imag(A) | 
|  | // if the original type equals destination type, no work is done | 
|  |  | 
|  | // Note that for most operations Eigen requires all operands to have the same type: | 
|  | MatrixXf F = MatrixXf::Zero(3,3); | 
|  | A += F;                // illegal in Eigen. In Matlab A = A+F is allowed | 
|  | A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly) | 
|  |  | 
|  | // Eigen can map existing memory into Eigen matrices. | 
|  | float array[3]; | 
|  | Vector3f::Map(array).fill(10);            // create a temporary Map over array and sets entries to 10 | 
|  | int data[4] = {1, 2, 3, 4}; | 
|  | Matrix2i mat2x2(data);                    // copies data into mat2x2 | 
|  | Matrix2i::Map(data) = 2*mat2x2;           // overwrite elements of data with 2*mat2x2 | 
|  | MatrixXi::Map(data, 2, 2) += mat2x2;      // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time) | 
|  |  | 
|  | // Solve Ax = b. Result stored in x. Matlab: x = A \ b. | 
|  | x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky> | 
|  | x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky> | 
|  | x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU> | 
|  | x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR> | 
|  | x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD> | 
|  | // .ldlt() -> .matrixL() and .matrixD() | 
|  | // .llt()  -> .matrixL() | 
|  | // .lu()   -> .matrixL() and .matrixU() | 
|  | // .qr()   -> .matrixQ() and .matrixR() | 
|  | // .svd()  -> .matrixU(), .singularValues(), and .matrixV() | 
|  |  | 
|  | // Eigenvalue problems | 
|  | // Eigen                          // Matlab | 
|  | A.eigenvalues();                  // eig(A); | 
|  | EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A) | 
|  | eig.eigenvalues();                // diag(val) | 
|  | eig.eigenvectors();               // vec | 
|  | // For self-adjoint matrices use SelfAdjointEigenSolver<> |