|  | *> \brief \b ZLARFT | 
|  | * | 
|  | *  =========== DOCUMENTATION =========== | 
|  | * | 
|  | * Online html documentation available at | 
|  | *            http://www.netlib.org/lapack/explore-html/ | 
|  | * | 
|  | *> \htmlonly | 
|  | *> Download ZLARFT + dependencies | 
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarft.f"> | 
|  | *> [TGZ]</a> | 
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarft.f"> | 
|  | *> [ZIP]</a> | 
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarft.f"> | 
|  | *> [TXT]</a> | 
|  | *> \endhtmlonly | 
|  | * | 
|  | *  Definition: | 
|  | *  =========== | 
|  | * | 
|  | *       SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | 
|  | * | 
|  | *       .. Scalar Arguments .. | 
|  | *       CHARACTER          DIRECT, STOREV | 
|  | *       INTEGER            K, LDT, LDV, N | 
|  | *       .. | 
|  | *       .. Array Arguments .. | 
|  | *       COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * ) | 
|  | *       .. | 
|  | * | 
|  | * | 
|  | *> \par Purpose: | 
|  | *  ============= | 
|  | *> | 
|  | *> \verbatim | 
|  | *> | 
|  | *> ZLARFT forms the triangular factor T of a complex block reflector H | 
|  | *> of order n, which is defined as a product of k elementary reflectors. | 
|  | *> | 
|  | *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; | 
|  | *> | 
|  | *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. | 
|  | *> | 
|  | *> If STOREV = 'C', the vector which defines the elementary reflector | 
|  | *> H(i) is stored in the i-th column of the array V, and | 
|  | *> | 
|  | *>    H  =  I - V * T * V**H | 
|  | *> | 
|  | *> If STOREV = 'R', the vector which defines the elementary reflector | 
|  | *> H(i) is stored in the i-th row of the array V, and | 
|  | *> | 
|  | *>    H  =  I - V**H * T * V | 
|  | *> \endverbatim | 
|  | * | 
|  | *  Arguments: | 
|  | *  ========== | 
|  | * | 
|  | *> \param[in] DIRECT | 
|  | *> \verbatim | 
|  | *>          DIRECT is CHARACTER*1 | 
|  | *>          Specifies the order in which the elementary reflectors are | 
|  | *>          multiplied to form the block reflector: | 
|  | *>          = 'F': H = H(1) H(2) . . . H(k) (Forward) | 
|  | *>          = 'B': H = H(k) . . . H(2) H(1) (Backward) | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in] STOREV | 
|  | *> \verbatim | 
|  | *>          STOREV is CHARACTER*1 | 
|  | *>          Specifies how the vectors which define the elementary | 
|  | *>          reflectors are stored (see also Further Details): | 
|  | *>          = 'C': columnwise | 
|  | *>          = 'R': rowwise | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in] N | 
|  | *> \verbatim | 
|  | *>          N is INTEGER | 
|  | *>          The order of the block reflector H. N >= 0. | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in] K | 
|  | *> \verbatim | 
|  | *>          K is INTEGER | 
|  | *>          The order of the triangular factor T (= the number of | 
|  | *>          elementary reflectors). K >= 1. | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in] V | 
|  | *> \verbatim | 
|  | *>          V is COMPLEX*16 array, dimension | 
|  | *>                               (LDV,K) if STOREV = 'C' | 
|  | *>                               (LDV,N) if STOREV = 'R' | 
|  | *>          The matrix V. See further details. | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in] LDV | 
|  | *> \verbatim | 
|  | *>          LDV is INTEGER | 
|  | *>          The leading dimension of the array V. | 
|  | *>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in] TAU | 
|  | *> \verbatim | 
|  | *>          TAU is COMPLEX*16 array, dimension (K) | 
|  | *>          TAU(i) must contain the scalar factor of the elementary | 
|  | *>          reflector H(i). | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[out] T | 
|  | *> \verbatim | 
|  | *>          T is COMPLEX*16 array, dimension (LDT,K) | 
|  | *>          The k by k triangular factor T of the block reflector. | 
|  | *>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is | 
|  | *>          lower triangular. The rest of the array is not used. | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in] LDT | 
|  | *> \verbatim | 
|  | *>          LDT is INTEGER | 
|  | *>          The leading dimension of the array T. LDT >= K. | 
|  | *> \endverbatim | 
|  | * | 
|  | *  Authors: | 
|  | *  ======== | 
|  | * | 
|  | *> \author Univ. of Tennessee | 
|  | *> \author Univ. of California Berkeley | 
|  | *> \author Univ. of Colorado Denver | 
|  | *> \author NAG Ltd. | 
|  | * | 
|  | *> \date April 2012 | 
|  | * | 
|  | *> \ingroup complex16OTHERauxiliary | 
|  | * | 
|  | *> \par Further Details: | 
|  | *  ===================== | 
|  | *> | 
|  | *> \verbatim | 
|  | *> | 
|  | *>  The shape of the matrix V and the storage of the vectors which define | 
|  | *>  the H(i) is best illustrated by the following example with n = 5 and | 
|  | *>  k = 3. The elements equal to 1 are not stored. | 
|  | *> | 
|  | *>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': | 
|  | *> | 
|  | *>               V = (  1       )                 V = (  1 v1 v1 v1 v1 ) | 
|  | *>                   ( v1  1    )                     (     1 v2 v2 v2 ) | 
|  | *>                   ( v1 v2  1 )                     (        1 v3 v3 ) | 
|  | *>                   ( v1 v2 v3 ) | 
|  | *>                   ( v1 v2 v3 ) | 
|  | *> | 
|  | *>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': | 
|  | *> | 
|  | *>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       ) | 
|  | *>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    ) | 
|  | *>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 ) | 
|  | *>                   (     1 v3 ) | 
|  | *>                   (        1 ) | 
|  | *> \endverbatim | 
|  | *> | 
|  | *  ===================================================================== | 
|  | SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | 
|  | * | 
|  | *  -- LAPACK auxiliary routine (version 3.4.1) -- | 
|  | *  -- LAPACK is a software package provided by Univ. of Tennessee,    -- | 
|  | *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | 
|  | *     April 2012 | 
|  | * | 
|  | *     .. Scalar Arguments .. | 
|  | CHARACTER          DIRECT, STOREV | 
|  | INTEGER            K, LDT, LDV, N | 
|  | *     .. | 
|  | *     .. Array Arguments .. | 
|  | COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * ) | 
|  | *     .. | 
|  | * | 
|  | *  ===================================================================== | 
|  | * | 
|  | *     .. Parameters .. | 
|  | COMPLEX*16         ONE, ZERO | 
|  | PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ), | 
|  | $                   ZERO = ( 0.0D+0, 0.0D+0 ) ) | 
|  | *     .. | 
|  | *     .. Local Scalars .. | 
|  | INTEGER            I, J, PREVLASTV, LASTV | 
|  | *     .. | 
|  | *     .. External Subroutines .. | 
|  | EXTERNAL           ZGEMV, ZLACGV, ZTRMV | 
|  | *     .. | 
|  | *     .. External Functions .. | 
|  | LOGICAL            LSAME | 
|  | EXTERNAL           LSAME | 
|  | *     .. | 
|  | *     .. Executable Statements .. | 
|  | * | 
|  | *     Quick return if possible | 
|  | * | 
|  | IF( N.EQ.0 ) | 
|  | $   RETURN | 
|  | * | 
|  | IF( LSAME( DIRECT, 'F' ) ) THEN | 
|  | PREVLASTV = N | 
|  | DO I = 1, K | 
|  | PREVLASTV = MAX( PREVLASTV, I ) | 
|  | IF( TAU( I ).EQ.ZERO ) THEN | 
|  | * | 
|  | *              H(i)  =  I | 
|  | * | 
|  | DO J = 1, I | 
|  | T( J, I ) = ZERO | 
|  | END DO | 
|  | ELSE | 
|  | * | 
|  | *              general case | 
|  | * | 
|  | IF( LSAME( STOREV, 'C' ) ) THEN | 
|  | *                 Skip any trailing zeros. | 
|  | DO LASTV = N, I+1, -1 | 
|  | IF( V( LASTV, I ).NE.ZERO ) EXIT | 
|  | END DO | 
|  | DO J = 1, I-1 | 
|  | T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) | 
|  | END DO | 
|  | J = MIN( LASTV, PREVLASTV ) | 
|  | * | 
|  | *                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) | 
|  | * | 
|  | CALL ZGEMV( 'Conjugate transpose', J-I, I-1, | 
|  | $                        -TAU( I ), V( I+1, 1 ), LDV, | 
|  | $                        V( I+1, I ), 1, ONE, T( 1, I ), 1 ) | 
|  | ELSE | 
|  | *                 Skip any trailing zeros. | 
|  | DO LASTV = N, I+1, -1 | 
|  | IF( V( I, LASTV ).NE.ZERO ) EXIT | 
|  | END DO | 
|  | DO J = 1, I-1 | 
|  | T( J, I ) = -TAU( I ) * V( J , I ) | 
|  | END DO | 
|  | J = MIN( LASTV, PREVLASTV ) | 
|  | * | 
|  | *                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H | 
|  | * | 
|  | CALL ZGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ), | 
|  | $                        V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | 
|  | $                        ONE, T( 1, I ), LDT ) | 
|  | END IF | 
|  | * | 
|  | *              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | 
|  | * | 
|  | CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | 
|  | $                     LDT, T( 1, I ), 1 ) | 
|  | T( I, I ) = TAU( I ) | 
|  | IF( I.GT.1 ) THEN | 
|  | PREVLASTV = MAX( PREVLASTV, LASTV ) | 
|  | ELSE | 
|  | PREVLASTV = LASTV | 
|  | END IF | 
|  | END IF | 
|  | END DO | 
|  | ELSE | 
|  | PREVLASTV = 1 | 
|  | DO I = K, 1, -1 | 
|  | IF( TAU( I ).EQ.ZERO ) THEN | 
|  | * | 
|  | *              H(i)  =  I | 
|  | * | 
|  | DO J = I, K | 
|  | T( J, I ) = ZERO | 
|  | END DO | 
|  | ELSE | 
|  | * | 
|  | *              general case | 
|  | * | 
|  | IF( I.LT.K ) THEN | 
|  | IF( LSAME( STOREV, 'C' ) ) THEN | 
|  | *                    Skip any leading zeros. | 
|  | DO LASTV = 1, I-1 | 
|  | IF( V( LASTV, I ).NE.ZERO ) EXIT | 
|  | END DO | 
|  | DO J = I+1, K | 
|  | T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) ) | 
|  | END DO | 
|  | J = MAX( LASTV, PREVLASTV ) | 
|  | * | 
|  | *                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) | 
|  | * | 
|  | CALL ZGEMV( 'Conjugate transpose', N-K+I-J, K-I, | 
|  | $                           -TAU( I ), V( J, I+1 ), LDV, V( J, I ), | 
|  | $                           1, ONE, T( I+1, I ), 1 ) | 
|  | ELSE | 
|  | *                    Skip any leading zeros. | 
|  | DO LASTV = 1, I-1 | 
|  | IF( V( I, LASTV ).NE.ZERO ) EXIT | 
|  | END DO | 
|  | DO J = I+1, K | 
|  | T( J, I ) = -TAU( I ) * V( J, N-K+I ) | 
|  | END DO | 
|  | J = MAX( LASTV, PREVLASTV ) | 
|  | * | 
|  | *                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H | 
|  | * | 
|  | CALL ZGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ), | 
|  | $                           V( I+1, J ), LDV, V( I, J ), LDV, | 
|  | $                           ONE, T( I+1, I ), LDT ) | 
|  | END IF | 
|  | * | 
|  | *                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | 
|  | * | 
|  | CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | 
|  | $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | 
|  | IF( I.GT.1 ) THEN | 
|  | PREVLASTV = MIN( PREVLASTV, LASTV ) | 
|  | ELSE | 
|  | PREVLASTV = LASTV | 
|  | END IF | 
|  | END IF | 
|  | T( I, I ) = TAU( I ) | 
|  | END IF | 
|  | END DO | 
|  | END IF | 
|  | RETURN | 
|  | * | 
|  | *     End of ZLARFT | 
|  | * | 
|  | END |