|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <limits> | 
|  | #include <Eigen/Eigenvalues> | 
|  | #include <Eigen/LU> | 
|  |  | 
|  | template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0) | 
|  | { | 
|  | bool match = diffs.diagonal().sum() <= tol; | 
|  | if(match || col==diffs.cols()) | 
|  | { | 
|  | return match; | 
|  | } | 
|  | else | 
|  | { | 
|  | Index n = diffs.cols(); | 
|  | std::vector<std::pair<Index,Index> > transpositions; | 
|  | for(Index i=col; i<n; ++i) | 
|  | { | 
|  | Index best_index(0); | 
|  | if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol) | 
|  | break; | 
|  |  | 
|  | best_index += col; | 
|  |  | 
|  | diffs.row(col).swap(diffs.row(best_index)); | 
|  | if(find_pivot(tol,diffs,col+1)) return true; | 
|  | diffs.row(col).swap(diffs.row(best_index)); | 
|  |  | 
|  | // move current pivot to the end | 
|  | diffs.row(n-(i-col)-1).swap(diffs.row(best_index)); | 
|  | transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index)); | 
|  | } | 
|  | // restore | 
|  | for(Index k=transpositions.size()-1; k>=0; --k) | 
|  | diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second)); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Check that two column vectors are approximately equal up to permutations. | 
|  | * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(), | 
|  | * however this strategy is numerically inacurate because of numerical cancellation issues. | 
|  | */ | 
|  | template<typename VectorType> | 
|  | void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) | 
|  | { | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | VERIFY(vec1.cols() == 1); | 
|  | VERIFY(vec2.cols() == 1); | 
|  | VERIFY(vec1.rows() == vec2.rows()); | 
|  |  | 
|  | Index n = vec1.rows(); | 
|  | RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm()); | 
|  | Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2(); | 
|  |  | 
|  | VERIFY( find_pivot(tol, diffs) ); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> void eigensolver(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | ComplexEigenSolver.h, and indirectly ComplexSchur.h | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | MatrixType a = MatrixType::Random(rows,cols); | 
|  | MatrixType symmA =  a.adjoint() * a; | 
|  |  | 
|  | ComplexEigenSolver<MatrixType> ei0(symmA); | 
|  | VERIFY_IS_EQUAL(ei0.info(), Success); | 
|  | VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); | 
|  |  | 
|  | ComplexEigenSolver<MatrixType> ei1(a); | 
|  | VERIFY_IS_EQUAL(ei1.info(), Success); | 
|  | VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); | 
|  | // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus | 
|  | // another algorithm so results may differ slightly | 
|  | verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); | 
|  |  | 
|  | ComplexEigenSolver<MatrixType> ei2; | 
|  | ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); | 
|  | VERIFY_IS_EQUAL(ei2.info(), Success); | 
|  | VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); | 
|  | VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); | 
|  | if (rows > 2) { | 
|  | ei2.setMaxIterations(1).compute(a); | 
|  | VERIFY_IS_EQUAL(ei2.info(), NoConvergence); | 
|  | VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); | 
|  | } | 
|  |  | 
|  | ComplexEigenSolver<MatrixType> eiNoEivecs(a, false); | 
|  | VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); | 
|  | VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); | 
|  |  | 
|  | // Regression test for issue #66 | 
|  | MatrixType z = MatrixType::Zero(rows,cols); | 
|  | ComplexEigenSolver<MatrixType> eiz(z); | 
|  | VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); | 
|  |  | 
|  | MatrixType id = MatrixType::Identity(rows, cols); | 
|  | VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); | 
|  |  | 
|  | if (rows > 1 && rows < 20) | 
|  | { | 
|  | // Test matrix with NaN | 
|  | a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | 
|  | ComplexEigenSolver<MatrixType> eiNaN(a); | 
|  | VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); | 
|  | } | 
|  |  | 
|  | // regression test for bug 1098 | 
|  | { | 
|  | ComplexEigenSolver<MatrixType> eig(a.adjoint() * a); | 
|  | eig.compute(a.adjoint() * a); | 
|  | } | 
|  |  | 
|  | // regression test for bug 478 | 
|  | { | 
|  | a.setZero(); | 
|  | ComplexEigenSolver<MatrixType> ei3(a); | 
|  | VERIFY_IS_EQUAL(ei3.info(), Success); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); | 
|  | VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) | 
|  | { | 
|  | ComplexEigenSolver<MatrixType> eig; | 
|  | VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
|  | VERIFY_RAISES_ASSERT(eig.eigenvalues()); | 
|  |  | 
|  | MatrixType a = MatrixType::Random(m.rows(),m.cols()); | 
|  | eig.compute(a, false); | 
|  | VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(eigensolver_complex) | 
|  | { | 
|  | int s = 0; | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | 
|  | CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) ); | 
|  | CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) ); | 
|  | CALL_SUBTEST_4( eigensolver(Matrix3f()) ); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } | 
|  | CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) ); | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | 
|  | CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) ); | 
|  | CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) ); | 
|  | CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) ); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s)); | 
|  |  | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } |