|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/QR> | 
|  |  | 
|  | template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Hyperplane.h | 
|  | */ | 
|  | using std::abs; | 
|  | const Index dim = _plane.dim(); | 
|  | enum { Options = HyperplaneType::Options }; | 
|  | typedef typename HyperplaneType::Scalar Scalar; | 
|  | typedef typename HyperplaneType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, | 
|  | HyperplaneType::AmbientDimAtCompileTime> MatrixType; | 
|  |  | 
|  | VectorType p0 = VectorType::Random(dim); | 
|  | VectorType p1 = VectorType::Random(dim); | 
|  |  | 
|  | VectorType n0 = VectorType::Random(dim).normalized(); | 
|  | VectorType n1 = VectorType::Random(dim).normalized(); | 
|  |  | 
|  | HyperplaneType pl0(n0, p0); | 
|  | HyperplaneType pl1(n1, p1); | 
|  | HyperplaneType pl2 = pl1; | 
|  |  | 
|  | Scalar s0 = internal::random<Scalar>(); | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  |  | 
|  | VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) ); | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) ); | 
|  | if(numext::abs2(s0)>RealScalar(1e-6)) | 
|  | VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0); | 
|  | else | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1) ); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) ); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 +  pl1.normal().unitOrthogonal() * s1), Scalar(1) ); | 
|  |  | 
|  | // transform | 
|  | if (!NumTraits<Scalar>::IsComplex) | 
|  | { | 
|  | MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ(); | 
|  | DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random()); | 
|  | Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random()); | 
|  |  | 
|  | while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random(); | 
|  |  | 
|  | pl2 = pl1; | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) ); | 
|  | pl2 = pl1; | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) ); | 
|  | pl2 = pl1; | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) ); | 
|  | VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) ); | 
|  | pl2 = pl1; | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation) | 
|  | .absDistance((rot*scaling*translation) * p1), Scalar(1) ); | 
|  | VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) ); | 
|  | pl2 = pl1; | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry) | 
|  | .absDistance((rot*translation) * p1), Scalar(1) ); | 
|  | VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) ); | 
|  | } | 
|  |  | 
|  | // casting | 
|  | const int Dim = HyperplaneType::AmbientDimAtCompileTime; | 
|  | typedef typename GetDifferentType<Scalar>::type OtherScalar; | 
|  | Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>(); | 
|  | VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1); | 
|  | Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>(); | 
|  | VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> void lines() | 
|  | { | 
|  | using std::abs; | 
|  | typedef Hyperplane<Scalar, 2> HLine; | 
|  | typedef ParametrizedLine<Scalar, 2> PLine; | 
|  | typedef Matrix<Scalar,2,1> Vector; | 
|  | typedef Matrix<Scalar,3,1> CoeffsType; | 
|  |  | 
|  | for(int i = 0; i < 10; i++) | 
|  | { | 
|  | Vector center = Vector::Random(); | 
|  | Vector u = Vector::Random(); | 
|  | Vector v = Vector::Random(); | 
|  | Scalar a = internal::random<Scalar>(); | 
|  | while (abs(a-1) < Scalar(1e-4)) a = internal::random<Scalar>(); | 
|  | while (u.norm() < Scalar(1e-4)) u = Vector::Random(); | 
|  | while (v.norm() < Scalar(1e-4)) v = Vector::Random(); | 
|  |  | 
|  | HLine line_u = HLine::Through(center + u, center + a*u); | 
|  | HLine line_v = HLine::Through(center + v, center + a*v); | 
|  |  | 
|  | // the line equations should be normalized so that a^2+b^2=1 | 
|  | VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1)); | 
|  | VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1)); | 
|  |  | 
|  | Vector result = line_u.intersection(line_v); | 
|  |  | 
|  | // the lines should intersect at the point we called "center" | 
|  | if(abs(a-1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized()))<Scalar(0.9)) | 
|  | VERIFY_IS_APPROX(result, center); | 
|  |  | 
|  | // check conversions between two types of lines | 
|  | PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable | 
|  | HLine line_u2(pl); | 
|  | CoeffsType converted_coeffs = line_u2.coeffs(); | 
|  | if(line_u2.normal().dot(line_u.normal())<Scalar(0)) | 
|  | converted_coeffs = -line_u2.coeffs(); | 
|  | VERIFY(line_u.coeffs().isApprox(converted_coeffs)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar> void planes() | 
|  | { | 
|  | using std::abs; | 
|  | typedef Hyperplane<Scalar, 3> Plane; | 
|  | typedef Matrix<Scalar,3,1> Vector; | 
|  |  | 
|  | for(int i = 0; i < 10; i++) | 
|  | { | 
|  | Vector v0 = Vector::Random(); | 
|  | Vector v1(v0), v2(v0); | 
|  | if(internal::random<double>(0,1)>0.25) | 
|  | v1 += Vector::Random(); | 
|  | if(internal::random<double>(0,1)>0.25) | 
|  | v2 += v1 * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16)); | 
|  | if(internal::random<double>(0,1)>0.25) | 
|  | v2 += Vector::Random() * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16)); | 
|  |  | 
|  | Plane p0 = Plane::Through(v0, v1, v2); | 
|  |  | 
|  | VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1)); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1)); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1)); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar> void hyperplane_alignment() | 
|  | { | 
|  | typedef Hyperplane<Scalar,3,AutoAlign> Plane3a; | 
|  | typedef Hyperplane<Scalar,3,DontAlign> Plane3u; | 
|  |  | 
|  | EIGEN_ALIGN_MAX Scalar array1[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array2[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array3[4+1]; | 
|  | Scalar* array3u = array3+1; | 
|  |  | 
|  | Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a; | 
|  | Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u; | 
|  | Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u; | 
|  |  | 
|  | p1->coeffs().setRandom(); | 
|  | *p2 = *p1; | 
|  | *p3 = *p1; | 
|  |  | 
|  | VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs()); | 
|  | VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs()); | 
|  |  | 
|  | #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES > 0 | 
|  | if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4) | 
|  | VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | EIGEN_DECLARE_TEST(geo_hyperplane) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) ); | 
|  | CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) ); | 
|  | CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) ); | 
|  | CALL_SUBTEST_2( hyperplane_alignment<float>() ); | 
|  | CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) ); | 
|  | CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) ); | 
|  | CALL_SUBTEST_1( lines<float>() ); | 
|  | CALL_SUBTEST_3( lines<double>() ); | 
|  | CALL_SUBTEST_2( planes<float>() ); | 
|  | CALL_SUBTEST_5( planes<double>() ); | 
|  | } | 
|  | } |