|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/SVD> | 
|  | #include "AnnoyingScalar.h" | 
|  |  | 
|  | template<typename T> T bounded_acos(T v) | 
|  | { | 
|  | using std::acos; | 
|  | using std::min; | 
|  | using std::max; | 
|  | return acos((max)(T(-1),(min)(v,T(1)))); | 
|  | } | 
|  |  | 
|  | template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1) | 
|  | { | 
|  | using std::abs; | 
|  | typedef typename QuatType::Scalar Scalar; | 
|  | typedef AngleAxis<Scalar> AA; | 
|  |  | 
|  | Scalar largeEps = test_precision<Scalar>(); | 
|  |  | 
|  | Scalar theta_tot = AA(q1*q0.inverse()).angle(); | 
|  | if(theta_tot>Scalar(EIGEN_PI)) | 
|  | theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot; | 
|  | for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1)) | 
|  | { | 
|  | QuatType q = q0.slerp(t,q1); | 
|  | Scalar theta = AA(q*q0.inverse()).angle(); | 
|  | VERIFY(abs(q.norm() - 1) < largeEps); | 
|  | if(theta_tot==0)  VERIFY(theta_tot==0); | 
|  | else              VERIFY(abs(theta - t * theta_tot) < largeEps); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Options> void quaternion(void) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Quaternion.h | 
|  | */ | 
|  | using std::abs; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | typedef Quaternion<Scalar,Options> Quaternionx; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  |  | 
|  | Scalar largeEps = test_precision<Scalar>(); | 
|  | if (internal::is_same<Scalar,float>::value) | 
|  | largeEps = Scalar(1e-3); | 
|  |  | 
|  | Scalar eps = internal::random<Scalar>() * Scalar(1e-2); | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), | 
|  | v1 = Vector3::Random(), | 
|  | v2 = Vector3::Random(), | 
|  | v3 = Vector3::Random(); | 
|  |  | 
|  | Scalar  a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)), | 
|  | b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
|  |  | 
|  | // Quaternion: Identity(), setIdentity(); | 
|  | Quaternionx q1, q2; | 
|  | q2.setIdentity(); | 
|  | VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); | 
|  | q1.coeffs().setRandom(); | 
|  | VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); | 
|  |  | 
|  | // concatenation | 
|  | q1 *= q2; | 
|  |  | 
|  | q1 = AngleAxisx(a, v0.normalized()); | 
|  | q2 = AngleAxisx(a, v1.normalized()); | 
|  |  | 
|  | // angular distance | 
|  | Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle()); | 
|  | if (refangle>Scalar(EIGEN_PI)) | 
|  | refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle; | 
|  |  | 
|  | if((q1.coeffs()-q2.coeffs()).norm() > Scalar(10)*largeEps) | 
|  | { | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1)); | 
|  | } | 
|  |  | 
|  | // rotation matrix conversion | 
|  | VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); | 
|  | VERIFY_IS_APPROX(q1 * q2 * v2, | 
|  | q1.toRotationMatrix() * q2.toRotationMatrix() * v2); | 
|  |  | 
|  | VERIFY(  (q2*q1).isApprox(q1*q2, largeEps) | 
|  | || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); | 
|  |  | 
|  | q2 = q1.toRotationMatrix(); | 
|  | VERIFY_IS_APPROX(q1*v1,q2*v1); | 
|  |  | 
|  | Matrix3 rot1(q1); | 
|  | VERIFY_IS_APPROX(q1*v1,rot1*v1); | 
|  | Quaternionx q3(rot1.transpose()*rot1); | 
|  | VERIFY_IS_APPROX(q3*v1,v1); | 
|  |  | 
|  |  | 
|  | // angle-axis conversion | 
|  | AngleAxisx aa = AngleAxisx(q1); | 
|  | VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | 
|  |  | 
|  | // Do not execute the test if the rotation angle is almost zero, or | 
|  | // the rotation axis and v1 are almost parallel. | 
|  | if (abs(aa.angle()) > Scalar(5)*test_precision<Scalar>() | 
|  | && (aa.axis() - v1.normalized()).norm() < Scalar(1.99) | 
|  | && (aa.axis() + v1.normalized()).norm() < Scalar(1.99)) | 
|  | { | 
|  | VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); | 
|  | } | 
|  |  | 
|  | // from two vector creation | 
|  | VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); | 
|  | VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); | 
|  | if (internal::is_same<Scalar,double>::value) | 
|  | { | 
|  | v3 = (v1.array()+eps).matrix(); | 
|  | VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); | 
|  | } | 
|  |  | 
|  | // from two vector creation static function | 
|  | VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized()); | 
|  | VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized()); | 
|  | if (internal::is_same<Scalar,double>::value) | 
|  | { | 
|  | v3 = (v1.array()+eps).matrix(); | 
|  | VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized()); | 
|  | } | 
|  |  | 
|  | // inverse and conjugate | 
|  | VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); | 
|  |  | 
|  | // test casting | 
|  | Quaternion<float> q1f = q1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); | 
|  | Quaternion<double> q1d = q1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); | 
|  |  | 
|  | // test bug 369 - improper alignment. | 
|  | Quaternionx *q = new Quaternionx; | 
|  | delete q; | 
|  |  | 
|  | q1 = Quaternionx::UnitRandom(); | 
|  | q2 = Quaternionx::UnitRandom(); | 
|  | check_slerp(q1,q2); | 
|  |  | 
|  | q1 = AngleAxisx(b, v1.normalized()); | 
|  | q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized()); | 
|  | check_slerp(q1,q2); | 
|  |  | 
|  | q1 = AngleAxisx(b,  v1.normalized()); | 
|  | q2 = AngleAxisx(-b, -v1.normalized()); | 
|  | check_slerp(q1,q2); | 
|  |  | 
|  | q1 = Quaternionx::UnitRandom(); | 
|  | q2.coeffs() = -q1.coeffs(); | 
|  | check_slerp(q1,q2); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> void mapQuaternion(void){ | 
|  | typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; | 
|  | typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA; | 
|  | typedef Map<Quaternion<Scalar> > MQuaternionUA; | 
|  | typedef Map<const Quaternion<Scalar> > MCQuaternionUA; | 
|  | typedef Quaternion<Scalar> Quaternionx; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), | 
|  | v1 = Vector3::Random(); | 
|  | Scalar  a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
|  |  | 
|  | EIGEN_ALIGN_MAX Scalar array1[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array2[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array3[4+1]; | 
|  | Scalar* array3unaligned = array3+1; | 
|  |  | 
|  | MQuaternionA    mq1(array1); | 
|  | MCQuaternionA   mcq1(array1); | 
|  | MQuaternionA    mq2(array2); | 
|  | MQuaternionUA   mq3(array3unaligned); | 
|  | MCQuaternionUA  mcq3(array3unaligned); | 
|  |  | 
|  | //  std::cerr << array1 << " " << array2 << " " << array3 << "\n"; | 
|  | mq1 = AngleAxisx(a, v0.normalized()); | 
|  | mq2 = mq1; | 
|  | mq3 = mq1; | 
|  |  | 
|  | Quaternionx q1 = mq1; | 
|  | Quaternionx q2 = mq2; | 
|  | Quaternionx q3 = mq3; | 
|  | Quaternionx q4 = MCQuaternionUA(array3unaligned); | 
|  |  | 
|  | VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); | 
|  | VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); | 
|  | VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); | 
|  | #ifdef EIGEN_VECTORIZE | 
|  | if(internal::packet_traits<Scalar>::Vectorizable) | 
|  | VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); | 
|  | #endif | 
|  |  | 
|  | VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); | 
|  |  | 
|  | VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); | 
|  |  | 
|  | VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); | 
|  |  | 
|  | VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); | 
|  |  | 
|  | VERIFY_IS_APPROX(mq1*mq2, q1*q2); | 
|  | VERIFY_IS_APPROX(mq3*mq2, q3*q2); | 
|  | VERIFY_IS_APPROX(mcq1*mq2, q1*q2); | 
|  | VERIFY_IS_APPROX(mcq3*mq2, q3*q2); | 
|  |  | 
|  | // Bug 1461, compilation issue with Map<const Quat>::w(), and other reference/constness checks: | 
|  | VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum()); | 
|  | VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum()); | 
|  | mq3.w() = 1; | 
|  | const Quaternionx& cq3(q3); | 
|  | VERIFY( &cq3.x() == &q3.x() ); | 
|  | const MQuaternionUA& cmq3(mq3); | 
|  | VERIFY( &cmq3.x() == &mq3.x() ); | 
|  | // FIXME the following should be ok. The problem is that currently the LValueBit flag | 
|  | // is used to determine whether we can return a coeff by reference or not, which is not enough for Map<const ...>. | 
|  | //const MCQuaternionUA& cmcq3(mcq3); | 
|  | //VERIFY( &cmcq3.x() == &mcq3.x() ); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> void quaternionAlignment(void){ | 
|  | typedef Quaternion<Scalar,AutoAlign> QuaternionA; | 
|  | typedef Quaternion<Scalar,DontAlign> QuaternionUA; | 
|  |  | 
|  | EIGEN_ALIGN_MAX Scalar array1[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array2[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array3[4+1]; | 
|  | Scalar* arrayunaligned = array3+1; | 
|  |  | 
|  | QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA; | 
|  | QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA; | 
|  | QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; | 
|  |  | 
|  | q1->coeffs().setRandom(); | 
|  | *q2 = *q1; | 
|  | *q3 = *q1; | 
|  |  | 
|  | VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); | 
|  | VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); | 
|  | #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0 | 
|  | if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4) | 
|  | VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) | 
|  | { | 
|  | // there's a lot that we can't test here while still having this test compile! | 
|  | // the only possible approach would be to run a script trying to compile stuff and checking that it fails. | 
|  | // CMake can help with that. | 
|  |  | 
|  | // verify that map-to-const don't have LvalueBit | 
|  | typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; | 
|  | VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); | 
|  | VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); | 
|  | VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); | 
|  | VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); | 
|  | } | 
|  |  | 
|  | #if EIGEN_HAS_RVALUE_REFERENCES | 
|  |  | 
|  | // Regression for bug 1573 | 
|  | struct MovableClass { | 
|  | // The following line is a workaround for gcc 4.7 and 4.8 (see bug 1573 comments). | 
|  | static_assert(std::is_nothrow_move_constructible<Quaternionf>::value,""); | 
|  | MovableClass() = default; | 
|  | MovableClass(const MovableClass&) = default; | 
|  | MovableClass(MovableClass&&) noexcept = default; | 
|  | MovableClass& operator=(const MovableClass&) = default; | 
|  | MovableClass& operator=(MovableClass&&) = default; | 
|  | Quaternionf m_quat; | 
|  | }; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | EIGEN_DECLARE_TEST(geo_quaternion) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(( quaternion<float,AutoAlign>() )); | 
|  | CALL_SUBTEST_1( check_const_correctness(Quaternionf()) ); | 
|  | CALL_SUBTEST_1(( quaternion<float,DontAlign>() )); | 
|  | CALL_SUBTEST_1(( quaternionAlignment<float>() )); | 
|  | CALL_SUBTEST_1( mapQuaternion<float>() ); | 
|  |  | 
|  | CALL_SUBTEST_2(( quaternion<double,AutoAlign>() )); | 
|  | CALL_SUBTEST_2( check_const_correctness(Quaterniond()) ); | 
|  | CALL_SUBTEST_2(( quaternion<double,DontAlign>() )); | 
|  | CALL_SUBTEST_2(( quaternionAlignment<double>() )); | 
|  | CALL_SUBTEST_2( mapQuaternion<double>() ); | 
|  |  | 
|  | AnnoyingScalar::dont_throw = true; | 
|  | CALL_SUBTEST_3(( quaternion<AnnoyingScalar,AutoAlign>() )); | 
|  | } | 
|  | } |