|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | template<typename T> | 
|  | Matrix<T,2,1> angleToVec(T a) | 
|  | { | 
|  | return Matrix<T,2,1>(std::cos(a), std::sin(a)); | 
|  | } | 
|  |  | 
|  | // This permits to workaround a bug in clang/llvm code generation. | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE | 
|  | void dont_over_optimize(T& x) { volatile typename T::Scalar tmp = x(0); x(0) = tmp; } | 
|  |  | 
|  | template<typename Scalar, int Mode, int Options> void non_projective_only() | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Cross.h Quaternion.h, Transform.cpp | 
|  | */ | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | typedef Quaternion<Scalar> Quaternionx; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  | typedef Transform<Scalar,3,Mode,Options> Transform3; | 
|  | typedef DiagonalMatrix<Scalar,3> AlignedScaling3; | 
|  | typedef Translation<Scalar,3> Translation3; | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), | 
|  | v1 = Vector3::Random(); | 
|  |  | 
|  | Transform3 t0, t1, t2; | 
|  |  | 
|  | Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
|  |  | 
|  | Quaternionx q1, q2; | 
|  |  | 
|  | q1 = AngleAxisx(a, v0.normalized()); | 
|  |  | 
|  | t0 = Transform3::Identity(); | 
|  | VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
|  |  | 
|  | t0.linear() = q1.toRotationMatrix(); | 
|  |  | 
|  | v0 << 50, 2, 1; | 
|  | t0.scale(v0); | 
|  |  | 
|  | VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x()); | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t1.setIdentity(); | 
|  | v1 << 1, 2, 3; | 
|  | t0.linear() = q1.toRotationMatrix(); | 
|  | t0.pretranslate(v0); | 
|  | t0.scale(v1); | 
|  | t1.linear() = q1.conjugate().toRotationMatrix(); | 
|  | t1.prescale(v1.cwiseInverse()); | 
|  | t1.translate(-v0); | 
|  |  | 
|  | VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); | 
|  |  | 
|  | t1.fromPositionOrientationScale(v0, q1, v1); | 
|  | VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | 
|  | VERIFY_IS_APPROX(t1*v1, t0*v1); | 
|  |  | 
|  | // translation * vector | 
|  | t0.setIdentity(); | 
|  | t0.translate(v0); | 
|  | VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); | 
|  |  | 
|  | // AlignedScaling * vector | 
|  | t0.setIdentity(); | 
|  | t0.scale(v0); | 
|  | VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1); | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Mode, int Options> void transformations() | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Cross.h Quaternion.h, Transform.cpp | 
|  | */ | 
|  | using std::cos; | 
|  | using std::abs; | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | typedef Matrix<Scalar,4,4> Matrix4; | 
|  | typedef Matrix<Scalar,2,1> Vector2; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | typedef Matrix<Scalar,4,1> Vector4; | 
|  | typedef Quaternion<Scalar> Quaternionx; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  | typedef Transform<Scalar,2,Mode,Options> Transform2; | 
|  | typedef Transform<Scalar,3,Mode,Options> Transform3; | 
|  | typedef typename Transform3::MatrixType MatrixType; | 
|  | typedef DiagonalMatrix<Scalar,3> AlignedScaling3; | 
|  | typedef Translation<Scalar,2> Translation2; | 
|  | typedef Translation<Scalar,3> Translation3; | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), | 
|  | v1 = Vector3::Random(); | 
|  | Matrix3 matrot1, m; | 
|  |  | 
|  | Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
|  | Scalar s0 = internal::random<Scalar>(), s1 = internal::random<Scalar>(); | 
|  |  | 
|  | while(v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random(); | 
|  | while(v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random(); | 
|  |  | 
|  | VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); | 
|  | VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(EIGEN_PI), v0.unitOrthogonal()) * v0); | 
|  | if(abs(cos(a)) > test_precision<Scalar>()) | 
|  | { | 
|  | VERIFY_IS_APPROX(cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); | 
|  | } | 
|  | m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); | 
|  | VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); | 
|  | VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); | 
|  |  | 
|  | Quaternionx q1, q2; | 
|  | q1 = AngleAxisx(a, v0.normalized()); | 
|  | q2 = AngleAxisx(a, v1.normalized()); | 
|  |  | 
|  | // rotation matrix conversion | 
|  | matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) | 
|  | * AngleAxisx(Scalar(0.2), Vector3::UnitY()) | 
|  | * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); | 
|  | VERIFY_IS_APPROX(matrot1 * v1, | 
|  | AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() | 
|  | * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() | 
|  | * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); | 
|  |  | 
|  | // angle-axis conversion | 
|  | AngleAxisx aa = AngleAxisx(q1); | 
|  | VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | 
|  |  | 
|  | // The following test is stable only if 2*angle != angle and v1 is not colinear with axis | 
|  | if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) ) | 
|  | { | 
|  | VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) ); | 
|  | } | 
|  |  | 
|  | aa.fromRotationMatrix(aa.toRotationMatrix()); | 
|  | VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | 
|  | // The following test is stable only if 2*angle != angle and v1 is not colinear with axis | 
|  | if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) ) | 
|  | { | 
|  | VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) ); | 
|  | } | 
|  |  | 
|  | // AngleAxis | 
|  | VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), | 
|  | Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); | 
|  |  | 
|  | AngleAxisx aa1; | 
|  | m = q1.toRotationMatrix(); | 
|  | aa1 = m; | 
|  | VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), | 
|  | Quaternionx(m).toRotationMatrix()); | 
|  |  | 
|  | // Transform | 
|  | // TODO complete the tests ! | 
|  | a = 0; | 
|  | while (abs(a)<Scalar(0.1)) | 
|  | a = internal::random<Scalar>(-Scalar(0.4)*Scalar(EIGEN_PI), Scalar(0.4)*Scalar(EIGEN_PI)); | 
|  | q1 = AngleAxisx(a, v0.normalized()); | 
|  | Transform3 t0, t1, t2; | 
|  |  | 
|  | // first test setIdentity() and Identity() | 
|  | t0.setIdentity(); | 
|  | VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
|  | t0.matrix().setZero(); | 
|  | t0 = Transform3::Identity(); | 
|  | VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t1.setIdentity(); | 
|  | v1 << 1, 2, 3; | 
|  | t0.linear() = q1.toRotationMatrix(); | 
|  | t0.pretranslate(v0); | 
|  | t0.scale(v1); | 
|  | t1.linear() = q1.conjugate().toRotationMatrix(); | 
|  | t1.prescale(v1.cwiseInverse()); | 
|  | t1.translate(-v0); | 
|  |  | 
|  | VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); | 
|  |  | 
|  | t1.fromPositionOrientationScale(v0, q1, v1); | 
|  | VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | 
|  |  | 
|  | t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); | 
|  | t1.setIdentity(); t1.scale(v0).rotate(q1); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); | 
|  | VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); | 
|  |  | 
|  | // More transform constructors, operator=, operator*= | 
|  |  | 
|  | Matrix3 mat3 = Matrix3::Random(); | 
|  | Matrix4 mat4; | 
|  | mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); | 
|  | Transform3 tmat3(mat3), tmat4(mat4); | 
|  | if(Mode!=int(AffineCompact)) | 
|  | tmat4.matrix()(3,3) = Scalar(1); | 
|  | VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); | 
|  |  | 
|  | Scalar a3 = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
|  | Vector3 v3 = Vector3::Random().normalized(); | 
|  | AngleAxisx aa3(a3, v3); | 
|  | Transform3 t3(aa3); | 
|  | Transform3 t4; | 
|  | t4 = aa3; | 
|  | VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | 
|  | t4.rotate(AngleAxisx(-a3,v3)); | 
|  | VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | 
|  | t4 *= aa3; | 
|  | VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | 
|  |  | 
|  | do { | 
|  | v3 = Vector3::Random(); | 
|  | dont_over_optimize(v3); | 
|  | } while (v3.cwiseAbs().minCoeff()<NumTraits<Scalar>::epsilon()); | 
|  | Translation3 tv3(v3); | 
|  | Transform3 t5(tv3); | 
|  | t4 = tv3; | 
|  | VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | 
|  | t4.translate((-v3).eval()); | 
|  | VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | 
|  | t4 *= tv3; | 
|  | VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | 
|  |  | 
|  | AlignedScaling3 sv3(v3); | 
|  | Transform3 t6(sv3); | 
|  | t4 = sv3; | 
|  | VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | 
|  | t4.scale(v3.cwiseInverse()); | 
|  | VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | 
|  | t4 *= sv3; | 
|  | VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | 
|  |  | 
|  | // matrix * transform | 
|  | VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix()); | 
|  |  | 
|  | // chained Transform product | 
|  | VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); | 
|  |  | 
|  | // check that Transform product doesn't have aliasing problems | 
|  | t5 = t4; | 
|  | t5 = t5*t5; | 
|  | VERIFY_IS_APPROX(t5, t4*t4); | 
|  |  | 
|  | // 2D transformation | 
|  | Transform2 t20, t21; | 
|  | Vector2 v20 = Vector2::Random(); | 
|  | Vector2 v21 = Vector2::Random(); | 
|  | for (int k=0; k<2; ++k) | 
|  | if (abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); | 
|  | t21.setIdentity(); | 
|  | t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); | 
|  | VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), | 
|  | t21.pretranslate(v20).scale(v21).matrix()); | 
|  |  | 
|  | t21.setIdentity(); | 
|  | t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); | 
|  | VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) | 
|  | * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); | 
|  |  | 
|  | // Transform - new API | 
|  | // 3D | 
|  | t0.setIdentity(); | 
|  | t0.rotate(q1).scale(v0).translate(v0); | 
|  | // mat * aligned scaling and mat * translation | 
|  | t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // mat * transformation and aligned scaling * translation | 
|  | t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t0.scale(s0).translate(v0); | 
|  | t1 = Eigen::Scaling(s0) * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | t0.prescale(s0); | 
|  | t1 = Eigen::Scaling(s0) * t1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | t0 = t3; | 
|  | t0.scale(s0); | 
|  | t1 = t3 * Eigen::Scaling(s0,s0,s0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | t0.prescale(s0); | 
|  | t1 = Eigen::Scaling(s0,s0,s0) * t1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | t0 = t3; | 
|  | t0.scale(s0); | 
|  | t1 = t3 * Eigen::Scaling(s0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | t0.prescale(s0); | 
|  | t1 = Eigen::Scaling(s0) * t1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t0.prerotate(q1).prescale(v0).pretranslate(v0); | 
|  | // translation * aligned scaling and transformation * mat | 
|  | t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // scaling * mat and translation * mat | 
|  | t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t0.scale(v0).translate(v0).rotate(q1); | 
|  | // translation * mat and aligned scaling * transformation | 
|  | t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // transformation * aligned scaling | 
|  | t0.scale(v0); | 
|  | t1 *= AlignedScaling3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); | 
|  | t1 = t1 * v0.asDiagonal(); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // transformation * translation | 
|  | t0.translate(v0); | 
|  | t1 = t1 * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // translation * transformation | 
|  | t0.pretranslate(v0); | 
|  | t1 = Translation3(v0) * t1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // transform * quaternion | 
|  | t0.rotate(q1); | 
|  | t1 = t1 * q1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // translation * quaternion | 
|  | t0.translate(v1).rotate(q1); | 
|  | t1 = t1 * (Translation3(v1) * q1); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // aligned scaling * quaternion | 
|  | t0.scale(v1).rotate(q1); | 
|  | t1 = t1 * (AlignedScaling3(v1) * q1); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // quaternion * transform | 
|  | t0.prerotate(q1); | 
|  | t1 = q1 * t1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // quaternion * translation | 
|  | t0.rotate(q1).translate(v1); | 
|  | t1 = t1 * (q1 * Translation3(v1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // quaternion * aligned scaling | 
|  | t0.rotate(q1).scale(v1); | 
|  | t1 = t1 * (q1 * AlignedScaling3(v1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // test transform inversion | 
|  | t0.setIdentity(); | 
|  | t0.translate(v0); | 
|  | do { | 
|  | t0.linear().setRandom(); | 
|  | } while(t0.linear().jacobiSvd().singularValues()(2)<test_precision<Scalar>()); | 
|  | Matrix4 t044 = Matrix4::Zero(); | 
|  | t044(3,3) = 1; | 
|  | t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); | 
|  | VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); | 
|  | t0.setIdentity(); | 
|  | t0.translate(v0).rotate(q1); | 
|  | t044 = Matrix4::Zero(); | 
|  | t044(3,3) = 1; | 
|  | t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); | 
|  | VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); | 
|  |  | 
|  | Matrix3 mat_rotation, mat_scaling; | 
|  | t0.setIdentity(); | 
|  | t0.translate(v0).rotate(q1).scale(v1); | 
|  | t0.computeRotationScaling(&mat_rotation, &mat_scaling); | 
|  | VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); | 
|  | VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); | 
|  | VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | 
|  | t0.computeScalingRotation(&mat_scaling, &mat_rotation); | 
|  | VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); | 
|  | VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); | 
|  | VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | 
|  |  | 
|  | // test casting | 
|  | Transform<float,3,Mode> t1f = t1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); | 
|  | Transform<double,3,Mode> t1d = t1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1); | 
|  |  | 
|  | Translation3 tr1(v0); | 
|  | Translation<float,3> tr1f = tr1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); | 
|  | Translation<double,3> tr1d = tr1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1); | 
|  |  | 
|  | AngleAxis<float> aa1f = aa1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); | 
|  | AngleAxis<double> aa1d = aa1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1); | 
|  |  | 
|  | Rotation2D<Scalar> r2d1(internal::random<Scalar>()); | 
|  | Rotation2D<float> r2d1f = r2d1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); | 
|  | Rotation2D<double> r2d1d = r2d1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); | 
|  |  | 
|  | for(int k=0; k<100; ++k) | 
|  | { | 
|  | Scalar angle = internal::random<Scalar>(-100,100); | 
|  | Rotation2D<Scalar> rot2(angle); | 
|  | VERIFY( rot2.smallestPositiveAngle() >= 0 ); | 
|  | VERIFY( rot2.smallestPositiveAngle() <= Scalar(2)*Scalar(EIGEN_PI) ); | 
|  | VERIFY_IS_APPROX( angleToVec(rot2.smallestPositiveAngle()), angleToVec(rot2.angle()) ); | 
|  |  | 
|  | VERIFY( rot2.smallestAngle() >= -Scalar(EIGEN_PI) ); | 
|  | VERIFY( rot2.smallestAngle() <=  Scalar(EIGEN_PI) ); | 
|  | VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()), angleToVec(rot2.angle()) ); | 
|  |  | 
|  | Matrix<Scalar,2,2> rot2_as_mat(rot2); | 
|  | Rotation2D<Scalar> rot3(rot2_as_mat); | 
|  | VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()),  angleToVec(rot3.angle()) ); | 
|  | } | 
|  |  | 
|  | s0 = internal::random<Scalar>(-100,100); | 
|  | s1 = internal::random<Scalar>(-100,100); | 
|  | Rotation2D<Scalar> R0(s0), R1(s1); | 
|  |  | 
|  | t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0)); | 
|  | t21 = Translation2(v20) * R0 * Eigen::Scaling(s0); | 
|  | VERIFY_IS_APPROX(t20,t21); | 
|  |  | 
|  | t20 = Translation2(v20) * (R0 * R0.inverse() * Eigen::Scaling(s0)); | 
|  | t21 = Translation2(v20) * Eigen::Scaling(s0); | 
|  | VERIFY_IS_APPROX(t20,t21); | 
|  |  | 
|  | VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle()); | 
|  | VERIFY_IS_APPROX( angleToVec(R1.smallestPositiveAngle()), angleToVec((R0.slerp(1, R1)).smallestPositiveAngle()) ); | 
|  | VERIFY_IS_APPROX(R0.smallestPositiveAngle(), (R0.slerp(0.5, R0)).smallestPositiveAngle()); | 
|  |  | 
|  | if(std::cos(s0)>0) | 
|  | VERIFY_IS_MUCH_SMALLER_THAN((R0.slerp(0.5, R0.inverse())).smallestAngle(), Scalar(1)); | 
|  | else | 
|  | VERIFY_IS_APPROX(Scalar(EIGEN_PI), (R0.slerp(0.5, R0.inverse())).smallestPositiveAngle()); | 
|  |  | 
|  | // Check path length | 
|  | Scalar l = 0; | 
|  | int path_steps = 100; | 
|  | for(int k=0; k<path_steps; ++k) | 
|  | { | 
|  | Scalar a1 = R0.slerp(Scalar(k)/Scalar(path_steps), R1).angle(); | 
|  | Scalar a2 = R0.slerp(Scalar(k+1)/Scalar(path_steps), R1).angle(); | 
|  | l += std::abs(a2-a1); | 
|  | } | 
|  | VERIFY(l<=Scalar(EIGEN_PI)*(Scalar(1)+NumTraits<Scalar>::epsilon()*Scalar(path_steps/2))); | 
|  |  | 
|  | // check basic features | 
|  | { | 
|  | Rotation2D<Scalar> r1;           // default ctor | 
|  | r1 = Rotation2D<Scalar>(s0);     // copy assignment | 
|  | VERIFY_IS_APPROX(r1.angle(),s0); | 
|  | Rotation2D<Scalar> r2(r1);       // copy ctor | 
|  | VERIFY_IS_APPROX(r2.angle(),s0); | 
|  | } | 
|  |  | 
|  | { | 
|  | Transform3 t32(Matrix4::Random()), t33, t34; | 
|  | t34 = t33 = t32; | 
|  | t32.scale(v0); | 
|  | t33*=AlignedScaling3(v0); | 
|  | VERIFY_IS_APPROX(t32.matrix(), t33.matrix()); | 
|  | t33 = t34 * AlignedScaling3(v0); | 
|  | VERIFY_IS_APPROX(t32.matrix(), t33.matrix()); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | template<typename A1, typename A2, typename P, typename Q, typename V, typename H> | 
|  | void transform_associativity_left(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) | 
|  | { | 
|  | VERIFY_IS_APPROX( q*(a1*v), (q*a1)*v ); | 
|  | VERIFY_IS_APPROX( q*(a2*v), (q*a2)*v ); | 
|  | VERIFY_IS_APPROX( q*(p*h).hnormalized(),  ((q*p)*h).hnormalized() ); | 
|  | } | 
|  |  | 
|  | template<typename A1, typename A2, typename P, typename Q, typename V, typename H> | 
|  | void transform_associativity2(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) | 
|  | { | 
|  | VERIFY_IS_APPROX( a1*(q*v), (a1*q)*v ); | 
|  | VERIFY_IS_APPROX( a2*(q*v), (a2*q)*v ); | 
|  | VERIFY_IS_APPROX( p *(q*v).homogeneous(), (p *q)*v.homogeneous() ); | 
|  |  | 
|  | transform_associativity_left(a1, a2,p, q, v, h); | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Options,typename RotationType> | 
|  | void transform_associativity(const RotationType& R) | 
|  | { | 
|  | typedef Matrix<Scalar,Dim,1> VectorType; | 
|  | typedef Matrix<Scalar,Dim+1,1> HVectorType; | 
|  | typedef Matrix<Scalar,Dim,Dim> LinearType; | 
|  | typedef Matrix<Scalar,Dim+1,Dim+1> MatrixType; | 
|  | typedef Transform<Scalar,Dim,AffineCompact,Options> AffineCompactType; | 
|  | typedef Transform<Scalar,Dim,Affine,Options> AffineType; | 
|  | typedef Transform<Scalar,Dim,Projective,Options> ProjectiveType; | 
|  | typedef DiagonalMatrix<Scalar,Dim> ScalingType; | 
|  | typedef Translation<Scalar,Dim> TranslationType; | 
|  |  | 
|  | AffineCompactType A1c; A1c.matrix().setRandom(); | 
|  | AffineCompactType A2c; A2c.matrix().setRandom(); | 
|  | AffineType A1(A1c); | 
|  | AffineType A2(A2c); | 
|  | ProjectiveType P1; P1.matrix().setRandom(); | 
|  | VectorType v1 = VectorType::Random(); | 
|  | VectorType v2 = VectorType::Random(); | 
|  | HVectorType h1 = HVectorType::Random(); | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  | LinearType L = LinearType::Random(); | 
|  | MatrixType M = MatrixType::Random(); | 
|  |  | 
|  | CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2, v2, h1) ); | 
|  | CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2c, v2, h1) ); | 
|  | CALL_SUBTEST( transform_associativity2(A1c, A1, P1, v1.asDiagonal(), v2, h1) ); | 
|  | CALL_SUBTEST( transform_associativity2(A1c, A1, P1, ScalingType(v1), v2, h1) ); | 
|  | CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(v1), v2, h1) ); | 
|  | CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(s1), v2, h1) ); | 
|  | CALL_SUBTEST( transform_associativity2(A1c, A1, P1, TranslationType(v1), v2, h1) ); | 
|  | CALL_SUBTEST( transform_associativity_left(A1c, A1, P1, L, v2, h1) ); | 
|  | CALL_SUBTEST( transform_associativity2(A1c, A1, P1, R, v2, h1) ); | 
|  |  | 
|  | VERIFY_IS_APPROX( A1*(M*h1), (A1*M)*h1 ); | 
|  | VERIFY_IS_APPROX( A1c*(M*h1), (A1c*M)*h1 ); | 
|  | VERIFY_IS_APPROX( P1*(M*h1), (P1*M)*h1 ); | 
|  |  | 
|  | VERIFY_IS_APPROX( M*(A1*h1), (M*A1)*h1 ); | 
|  | VERIFY_IS_APPROX( M*(A1c*h1), (M*A1c)*h1 ); | 
|  | VERIFY_IS_APPROX( M*(P1*h1),  ((M*P1)*h1) ); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> void transform_alignment() | 
|  | { | 
|  | typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a; | 
|  | typedef Transform<Scalar,3,Projective,DontAlign> Projective3u; | 
|  |  | 
|  | EIGEN_ALIGN_MAX Scalar array1[16]; | 
|  | EIGEN_ALIGN_MAX Scalar array2[16]; | 
|  | EIGEN_ALIGN_MAX Scalar array3[16+1]; | 
|  | Scalar* array3u = array3+1; | 
|  |  | 
|  | Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a; | 
|  | Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u; | 
|  | Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u; | 
|  |  | 
|  | p1->matrix().setRandom(); | 
|  | *p2 = *p1; | 
|  | *p3 = *p1; | 
|  |  | 
|  | VERIFY_IS_APPROX(p1->matrix(), p2->matrix()); | 
|  | VERIFY_IS_APPROX(p1->matrix(), p3->matrix()); | 
|  |  | 
|  | VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3)); | 
|  |  | 
|  | #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0 | 
|  | if(internal::packet_traits<Scalar>::Vectorizable) | 
|  | VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Options> void transform_products() | 
|  | { | 
|  | typedef Matrix<Scalar,Dim+1,Dim+1> Mat; | 
|  | typedef Transform<Scalar,Dim,Projective,Options> Proj; | 
|  | typedef Transform<Scalar,Dim,Affine,Options> Aff; | 
|  | typedef Transform<Scalar,Dim,AffineCompact,Options> AffC; | 
|  |  | 
|  | Proj p; p.matrix().setRandom(); | 
|  | Aff a; a.linear().setRandom(); a.translation().setRandom(); | 
|  | AffC ac = a; | 
|  |  | 
|  | Mat p_m(p.matrix()), a_m(a.matrix()); | 
|  |  | 
|  | VERIFY_IS_APPROX((p*p).matrix(), p_m*p_m); | 
|  | VERIFY_IS_APPROX((a*a).matrix(), a_m*a_m); | 
|  | VERIFY_IS_APPROX((p*a).matrix(), p_m*a_m); | 
|  | VERIFY_IS_APPROX((a*p).matrix(), a_m*p_m); | 
|  | VERIFY_IS_APPROX((ac*a).matrix(), a_m*a_m); | 
|  | VERIFY_IS_APPROX((a*ac).matrix(), a_m*a_m); | 
|  | VERIFY_IS_APPROX((p*ac).matrix(), p_m*a_m); | 
|  | VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m); | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Mode, int Options> void transformations_no_scale() | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Cross.h Quaternion.h, Transform.h | 
|  | */ | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | typedef Matrix<Scalar,4,1> Vector4; | 
|  | typedef Quaternion<Scalar> Quaternionx; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  | typedef Transform<Scalar,3,Mode,Options> Transform3; | 
|  | typedef Translation<Scalar,3> Translation3; | 
|  | typedef Matrix<Scalar,4,4> Matrix4; | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), | 
|  | v1 = Vector3::Random(); | 
|  |  | 
|  | Transform3 t0, t1, t2; | 
|  |  | 
|  | Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
|  |  | 
|  | Quaternionx q1, q2; | 
|  |  | 
|  | q1 = AngleAxisx(a, v0.normalized()); | 
|  |  | 
|  | t0 = Transform3::Identity(); | 
|  | VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t1.setIdentity(); | 
|  | v1 = Vector3::Ones(); | 
|  | t0.linear() = q1.toRotationMatrix(); | 
|  | t0.pretranslate(v0); | 
|  | t1.linear() = q1.conjugate().toRotationMatrix(); | 
|  | t1.translate(-v0); | 
|  |  | 
|  | VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); | 
|  |  | 
|  | t1.fromPositionOrientationScale(v0, q1, v1); | 
|  | VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | 
|  | VERIFY_IS_APPROX(t1*v1, t0*v1); | 
|  |  | 
|  | // translation * vector | 
|  | t0.setIdentity(); | 
|  | t0.translate(v0); | 
|  | VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); | 
|  |  | 
|  | // Conversion to matrix. | 
|  | Transform3 t3; | 
|  | t3.linear() = q1.toRotationMatrix(); | 
|  | t3.translation() = v1; | 
|  | Matrix4 m3 = t3.matrix(); | 
|  | VERIFY((m3 * m3.inverse()).isIdentity(test_precision<Scalar>())); | 
|  | // Verify implicit last row is initialized. | 
|  | VERIFY_IS_APPROX(Vector4(m3.row(3)), Vector4(0.0, 0.0, 0.0, 1.0)); | 
|  |  | 
|  | VERIFY_IS_APPROX(t3.rotation(), t3.linear()); | 
|  | if(Mode==Isometry) | 
|  | VERIFY(t3.rotation().data()==t3.linear().data()); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(geo_transformations) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() )); | 
|  | CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() )); | 
|  |  | 
|  | CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() )); | 
|  | CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() )); | 
|  | CALL_SUBTEST_2(( transform_alignment<float>() )); | 
|  |  | 
|  | CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() )); | 
|  | CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() )); | 
|  | CALL_SUBTEST_3(( transform_alignment<double>() )); | 
|  |  | 
|  | CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() )); | 
|  | CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() )); | 
|  |  | 
|  | CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() )); | 
|  | CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() )); | 
|  |  | 
|  | CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() )); | 
|  | CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() )); | 
|  |  | 
|  |  | 
|  | CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() )); | 
|  | CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() )); | 
|  |  | 
|  | CALL_SUBTEST_8(( transform_associativity<double,2,ColMajor>(Rotation2D<double>(internal::random<double>()*double(EIGEN_PI))) )); | 
|  | CALL_SUBTEST_8(( transform_associativity<double,3,ColMajor>(Quaterniond::UnitRandom()) )); | 
|  |  | 
|  | CALL_SUBTEST_9(( transformations_no_scale<double,Affine,AutoAlign>() )); | 
|  | CALL_SUBTEST_9(( transformations_no_scale<double,Isometry,AutoAlign>() )); | 
|  | } | 
|  | } |