|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // workaround issue between gcc >= 4.7 and cuda 5.5 | 
|  | #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) | 
|  | #undef _GLIBCXX_ATOMIC_BUILTINS | 
|  | #undef _GLIBCXX_USE_INT128 | 
|  | #endif | 
|  |  | 
|  | #define EIGEN_TEST_NO_LONGDOUBLE | 
|  | #define EIGEN_TEST_NO_COMPLEX | 
|  | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
|  |  | 
|  | #include "main.h" | 
|  | #include "gpu_common.h" | 
|  |  | 
|  | // Check that dense modules can be properly parsed by nvcc | 
|  | #include <Eigen/Dense> | 
|  |  | 
|  | // struct Foo{ | 
|  | //   EIGEN_DEVICE_FUNC | 
|  | //   void operator()(int i, const float* mats, float* vecs) const { | 
|  | //     using namespace Eigen; | 
|  | //   //   Matrix3f M(data); | 
|  | //   //   Vector3f x(data+9); | 
|  | //   //   Map<Vector3f>(data+9) = M.inverse() * x; | 
|  | //     Matrix3f M(mats+i/16); | 
|  | //     Vector3f x(vecs+i*3); | 
|  | //   //   using std::min; | 
|  | //   //   using std::sqrt; | 
|  | //     Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() *  x) / x.x(); | 
|  | //     //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum(); | 
|  | //   } | 
|  | // }; | 
|  |  | 
|  | template<typename T> | 
|  | struct coeff_wise { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | T x1(in+i); | 
|  | T x2(in+i+1); | 
|  | T x3(in+i+2); | 
|  | Map<T> res(out+i*T::MaxSizeAtCompileTime); | 
|  |  | 
|  | res.array() += (in[0] * x1 + x2).array() * x3.array(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct replicate { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | T x1(in+i); | 
|  | int step   = x1.size() * 4; | 
|  | int stride = 3 * step; | 
|  |  | 
|  | typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType; | 
|  | MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); | 
|  | MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); | 
|  | MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct redux { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | int N = 10; | 
|  | T x1(in+i); | 
|  | out[i*N+0] = x1.minCoeff(); | 
|  | out[i*N+1] = x1.maxCoeff(); | 
|  | out[i*N+2] = x1.sum(); | 
|  | out[i*N+3] = x1.prod(); | 
|  | out[i*N+4] = x1.matrix().squaredNorm(); | 
|  | out[i*N+5] = x1.matrix().norm(); | 
|  | out[i*N+6] = x1.colwise().sum().maxCoeff(); | 
|  | out[i*N+7] = x1.rowwise().maxCoeff().sum(); | 
|  | out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T1, typename T2> | 
|  | struct prod_test { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3; | 
|  | T1 x1(in+i); | 
|  | T2 x2(in+i+1); | 
|  | Map<T3> res(out+i*T3::MaxSizeAtCompileTime); | 
|  | res += in[i] * x1 * x2; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T1, typename T2> | 
|  | struct diagonal { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | T1 x1(in+i); | 
|  | Map<T2> res(out+i*T2::MaxSizeAtCompileTime); | 
|  | res += x1.diagonal(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct eigenvalues_direct { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; | 
|  | T M(in+i); | 
|  | Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); | 
|  | T A = M*M.adjoint(); | 
|  | SelfAdjointEigenSolver<T> eig; | 
|  | eig.computeDirect(A); | 
|  | res = eig.eigenvalues(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct eigenvalues { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; | 
|  | T M(in+i); | 
|  | Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); | 
|  | T A = M*M.adjoint(); | 
|  | SelfAdjointEigenSolver<T> eig; | 
|  | eig.compute(A); | 
|  | res = eig.eigenvalues(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct matrix_inverse { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | T M(in+i); | 
|  | Map<T> res(out+i*T::MaxSizeAtCompileTime); | 
|  | res = M.inverse(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | EIGEN_DECLARE_TEST(gpu_basic) | 
|  | { | 
|  | ei_test_init_gpu(); | 
|  |  | 
|  | int nthreads = 100; | 
|  | Eigen::VectorXf in, out; | 
|  |  | 
|  | #if !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) | 
|  | int data_size = nthreads * 512; | 
|  | in.setRandom(data_size); | 
|  | out.setRandom(data_size); | 
|  | #endif | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) ); | 
|  |  | 
|  | #if !defined(EIGEN_USE_HIP) | 
|  | // FIXME | 
|  | // These subtests result in a compile failure on the HIP platform | 
|  | // | 
|  | //  eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error: | 
|  | //           base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type' | 
|  | //           (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) ); | 
|  | #endif | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) ); | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) ); | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) ); | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) ); | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) ); | 
|  |  | 
|  | #if defined(__NVCC__) | 
|  | // FIXME | 
|  | // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) ); | 
|  | typedef Matrix<float,6,6> Matrix6f; | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) ); | 
|  | #endif | 
|  | } |