|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include "unsupported/Eigen/SpecialFunctions" | 
|  | #include <typeinfo> | 
|  |  | 
|  | #if defined __GNUC__ && __GNUC__>=6 | 
|  | #pragma GCC diagnostic ignored "-Wignored-attributes" | 
|  | #endif | 
|  | // using namespace Eigen; | 
|  |  | 
|  | #ifdef EIGEN_VECTORIZE_SSE | 
|  | const bool g_vectorize_sse = true; | 
|  | #else | 
|  | const bool g_vectorize_sse = false; | 
|  | #endif | 
|  |  | 
|  | bool g_first_pass = true; | 
|  |  | 
|  | namespace Eigen { | 
|  | namespace internal { | 
|  |  | 
|  | template<typename T> T negate(const T& x) { return -x; } | 
|  |  | 
|  | template<typename T> | 
|  | Map<const Array<unsigned char,sizeof(T),1> > | 
|  | bits(const T& x) { | 
|  | return Map<const Array<unsigned char,sizeof(T),1> >(reinterpret_cast<const unsigned char *>(&x)); | 
|  | } | 
|  |  | 
|  | // The following implement bitwise operations on floating point types | 
|  | template<typename T,typename Bits,typename Func> | 
|  | T apply_bit_op(Bits a, Bits b, Func f) { | 
|  | Array<unsigned char,sizeof(T),1> res; | 
|  | for(Index i=0; i<res.size();++i) res[i] = f(a[i],b[i]); | 
|  | return *reinterpret_cast<T*>(&res); | 
|  | } | 
|  |  | 
|  | #define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T)             \ | 
|  | template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \ | 
|  | return apply_bit_op<T>(bits(a),bits(b),FUNC);     \ | 
|  | } | 
|  |  | 
|  | #define EIGEN_TEST_MAKE_BITWISE(OP,FUNC)                  \ | 
|  | EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float)                 \ | 
|  | EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double)                \ | 
|  | EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half)                  \ | 
|  | EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<float>)   \ | 
|  | EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<double>) | 
|  |  | 
|  | EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor<unsigned char>()) | 
|  | EIGEN_TEST_MAKE_BITWISE(and,std::bit_and<unsigned char>()) | 
|  | EIGEN_TEST_MAKE_BITWISE(or, std::bit_or<unsigned char>()) | 
|  | struct bit_andnot{ | 
|  | template<typename T> T | 
|  | operator()(T a, T b) const { return a & (~b); } | 
|  | }; | 
|  | EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot()) | 
|  | template<typename T> | 
|  | bool biteq(T a, T b) { | 
|  | return (bits(a) == bits(b)).all(); | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | // NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU. | 
|  | template<typename Scalar> EIGEN_DONT_INLINE | 
|  | bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue) | 
|  | { | 
|  | return internal::isMuchSmallerThan(a-b, refvalue); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue) | 
|  | { | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | if (!isApproxAbs(a[i],b[i],refvalue)) | 
|  | { | 
|  | std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size) | 
|  | { | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | if ((!internal::biteq(a[i],b[i])) && a[i]!=b[i] && !internal::isApprox(a[i],b[i])) | 
|  | { | 
|  | std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define CHECK_CWISE1(REFOP, POP) { \ | 
|  | for (int i=0; i<PacketSize; ++i) \ | 
|  | ref[i] = REFOP(data1[i]); \ | 
|  | internal::pstore(data2, POP(internal::pload<Packet>(data1))); \ | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ | 
|  | } | 
|  |  | 
|  | template<bool Cond,typename Packet> | 
|  | struct packet_helper | 
|  | { | 
|  | template<typename T> | 
|  | inline Packet load(const T* from) const { return internal::pload<Packet>(from); } | 
|  |  | 
|  | template<typename T> | 
|  | inline Packet loadu(const T* from) const { return internal::ploadu<Packet>(from); } | 
|  |  | 
|  | template<typename T> | 
|  | inline Packet load(const T* from, unsigned long long umask) const { return internal::ploadu<Packet>(from, umask); } | 
|  |  | 
|  | template<typename T> | 
|  | inline void store(T* to, const Packet& x) const { internal::pstore(to,x); } | 
|  |  | 
|  | template<typename T> | 
|  | inline void store(T* to, const Packet& x, unsigned long long umask) const { internal::pstoreu(to, x, umask); } | 
|  | }; | 
|  |  | 
|  | template<typename Packet> | 
|  | struct packet_helper<false,Packet> | 
|  | { | 
|  | template<typename T> | 
|  | inline T load(const T* from) const { return *from; } | 
|  |  | 
|  | template<typename T> | 
|  | inline T loadu(const T* from) const { return *from; } | 
|  |  | 
|  | template<typename T> | 
|  | inline T load(const T* from, unsigned long long) const { return *from; } | 
|  |  | 
|  | template<typename T> | 
|  | inline void store(T* to, const T& x) const { *to = x; } | 
|  |  | 
|  | template<typename T> | 
|  | inline void store(T* to, const T& x, unsigned long long) const { *to = x; } | 
|  | }; | 
|  |  | 
|  | #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \ | 
|  | packet_helper<COND,Packet> h; \ | 
|  | for (int i=0; i<PacketSize; ++i) \ | 
|  | ref[i] = REFOP(data1[i]); \ | 
|  | h.store(data2, POP(h.load(data1))); \ | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ | 
|  | } | 
|  |  | 
|  | #define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \ | 
|  | packet_helper<COND,Packet> h; \ | 
|  | for (int i=0; i<PacketSize; ++i) \ | 
|  | ref[i] = REFOP(data1[i], data1[i+PacketSize]); \ | 
|  | h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \ | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ | 
|  | } | 
|  |  | 
|  | #define CHECK_CWISE3_IF(COND, REFOP, POP) if (COND) {                      \ | 
|  | packet_helper<COND, Packet> h;                                           \ | 
|  | for (int i = 0; i < PacketSize; ++i)                                     \ | 
|  | ref[i] =                                                               \ | 
|  | REFOP(data1[i], data1[i + PacketSize], data1[i + 2 * PacketSize]); \ | 
|  | h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize),            \ | 
|  | h.load(data1 + 2 * PacketSize)));                     \ | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && #POP);                       \ | 
|  | } | 
|  |  | 
|  | #define REF_ADD(a,b) ((a)+(b)) | 
|  | #define REF_SUB(a,b) ((a)-(b)) | 
|  | #define REF_MUL(a,b) ((a)*(b)) | 
|  | #define REF_DIV(a,b) ((a)/(b)) | 
|  |  | 
|  | template<typename Scalar,typename Packet> void packetmath() | 
|  | { | 
|  | using std::abs; | 
|  | typedef internal::packet_traits<Scalar> PacketTraits; | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | if (g_first_pass) | 
|  | std::cerr << "=== Testing packet of type '" << typeid(Packet).name() | 
|  | << "' and scalar type '" << typeid(Scalar).name() | 
|  | << "' and size '" << PacketSize << "' ===\n" ; | 
|  |  | 
|  | const int max_size = PacketSize > 4 ? PacketSize : 4; | 
|  | const int size = PacketSize*max_size; | 
|  | EIGEN_ALIGN_MAX Scalar data1[size]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[size]; | 
|  | EIGEN_ALIGN_MAX Scalar data3[size]; | 
|  | EIGEN_ALIGN_MAX Packet packets[PacketSize*2]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[size]; | 
|  | RealScalar refvalue = RealScalar(0); | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | data1[i] = internal::random<Scalar>()/RealScalar(PacketSize); | 
|  | data2[i] = internal::random<Scalar>()/RealScalar(PacketSize); | 
|  | refvalue = (std::max)(refvalue,abs(data1[i])); | 
|  | } | 
|  |  | 
|  | internal::pstore(data2, internal::pload<Packet>(data1)); | 
|  | VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store"); | 
|  |  | 
|  | for (int offset=0; offset<PacketSize; ++offset) | 
|  | { | 
|  | internal::pstore(data2, internal::ploadu<Packet>(data1+offset)); | 
|  | VERIFY(areApprox(data1+offset, data2, PacketSize) && "internal::ploadu"); | 
|  | } | 
|  |  | 
|  | for (int offset=0; offset<PacketSize; ++offset) | 
|  | { | 
|  | internal::pstoreu(data2+offset, internal::pload<Packet>(data1)); | 
|  | VERIFY(areApprox(data1, data2+offset, PacketSize) && "internal::pstoreu"); | 
|  | } | 
|  |  | 
|  | if (internal::unpacket_traits<Packet>::masked_load_available) | 
|  | { | 
|  | packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h; | 
|  | unsigned long long max_umask = (0x1ull << PacketSize); | 
|  |  | 
|  | for (int offset=0; offset<PacketSize; ++offset) | 
|  | { | 
|  | for (unsigned long long umask=0; umask<max_umask; ++umask) | 
|  | { | 
|  | h.store(data2, h.load(data1+offset, umask)); | 
|  | for (int k=0; k<PacketSize; ++k) | 
|  | data3[k] = ((umask & ( 0x1ull << k )) >> k) ? data1[k+offset] : Scalar(0); | 
|  | VERIFY(areApprox(data3, data2, PacketSize) && "internal::ploadu masked"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (internal::unpacket_traits<Packet>::masked_store_available) | 
|  | { | 
|  | packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h; | 
|  | unsigned long long max_umask = (0x1ull << PacketSize); | 
|  |  | 
|  | for (int offset=0; offset<PacketSize; ++offset) | 
|  | { | 
|  | for (unsigned long long umask=0; umask<max_umask; ++umask) | 
|  | { | 
|  | internal::pstore(data2, internal::pset1<Packet>(Scalar(0))); | 
|  | h.store(data2, h.loadu(data1+offset), umask); | 
|  | for (int k=0; k<PacketSize; ++k) | 
|  | data3[k] = ((umask & ( 0x1ull << k )) >> k) ? data1[k+offset] : Scalar(0); | 
|  | VERIFY(areApprox(data3, data2, PacketSize) && "internal::pstoreu masked"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int offset=0; offset<PacketSize; ++offset) | 
|  | { | 
|  | #define MIN(A,B) (A<B?A:B) | 
|  | packets[0] = internal::pload<Packet>(data1); | 
|  | packets[1] = internal::pload<Packet>(data1+PacketSize); | 
|  | if (offset==0) internal::palign<0>(packets[0], packets[1]); | 
|  | else if (offset==1) internal::palign<MIN(1,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==2) internal::palign<MIN(2,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==3) internal::palign<MIN(3,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==4) internal::palign<MIN(4,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==5) internal::palign<MIN(5,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==6) internal::palign<MIN(6,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==7) internal::palign<MIN(7,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==8) internal::palign<MIN(8,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==9) internal::palign<MIN(9,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==10) internal::palign<MIN(10,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==11) internal::palign<MIN(11,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==12) internal::palign<MIN(12,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==13) internal::palign<MIN(13,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==14) internal::palign<MIN(14,PacketSize-1)>(packets[0], packets[1]); | 
|  | else if (offset==15) internal::palign<MIN(15,PacketSize-1)>(packets[0], packets[1]); | 
|  | internal::pstore(data2, packets[0]); | 
|  |  | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[i] = data1[i+offset]; | 
|  |  | 
|  | // palign is not used anymore, so let's just put a warning if it fails | 
|  | ++g_test_level; | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && "internal::palign"); | 
|  | --g_test_level; | 
|  | } | 
|  |  | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd); | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub); | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul); | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasNegate); | 
|  | // Disabled as it is not clear why it would be mandatory to support division. | 
|  | //VERIFY((internal::is_same<Scalar,int>::value) || (!PacketTraits::Vectorizable) || PacketTraits::HasDiv); | 
|  |  | 
|  | CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD,  internal::padd); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB,  internal::psub); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL,  internal::pmul); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv); | 
|  |  | 
|  | CHECK_CWISE1(internal::pnot, internal::pnot); | 
|  | CHECK_CWISE1(internal::pzero, internal::pzero); | 
|  | CHECK_CWISE1(internal::ptrue, internal::ptrue); | 
|  | CHECK_CWISE1(internal::negate, internal::pnegate); | 
|  | CHECK_CWISE1(numext::conj, internal::pconj); | 
|  |  | 
|  | for(int offset=0;offset<3;++offset) | 
|  | { | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[i] = data1[offset]; | 
|  | internal::pstore(data2, internal::pset1<Packet>(data1[offset])); | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1"); | 
|  | } | 
|  |  | 
|  | { | 
|  | for (int i=0; i<PacketSize*4; ++i) | 
|  | ref[i] = data1[i/PacketSize]; | 
|  | Packet A0, A1, A2, A3; | 
|  | internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3); | 
|  | internal::pstore(data2+0*PacketSize, A0); | 
|  | internal::pstore(data2+1*PacketSize, A1); | 
|  | internal::pstore(data2+2*PacketSize, A2); | 
|  | internal::pstore(data2+3*PacketSize, A3); | 
|  | VERIFY(areApprox(ref, data2, 4*PacketSize) && "internal::pbroadcast4"); | 
|  | } | 
|  |  | 
|  | { | 
|  | for (int i=0; i<PacketSize*2; ++i) | 
|  | ref[i] = data1[i/PacketSize]; | 
|  | Packet A0, A1; | 
|  | internal::pbroadcast2<Packet>(data1, A0, A1); | 
|  | internal::pstore(data2+0*PacketSize, A0); | 
|  | internal::pstore(data2+1*PacketSize, A1); | 
|  | VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2"); | 
|  | } | 
|  |  | 
|  | VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst"); | 
|  |  | 
|  | if(PacketSize>1) | 
|  | { | 
|  | // apply different offsets to check that ploaddup is robust to unaligned inputs | 
|  | for(int offset=0;offset<4;++offset) | 
|  | { | 
|  | for(int i=0;i<PacketSize/2;++i) | 
|  | ref[2*i+0] = ref[2*i+1] = data1[offset+i]; | 
|  | internal::pstore(data2,internal::ploaddup<Packet>(data1+offset)); | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if(PacketSize>2) | 
|  | { | 
|  | // apply different offsets to check that ploadquad is robust to unaligned inputs | 
|  | for(int offset=0;offset<4;++offset) | 
|  | { | 
|  | for(int i=0;i<PacketSize/4;++i) | 
|  | ref[4*i+0] = ref[4*i+1] = ref[4*i+2] = ref[4*i+3] = data1[offset+i]; | 
|  | internal::pstore(data2,internal::ploadquad<Packet>(data1+offset)); | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && "ploadquad"); | 
|  | } | 
|  | } | 
|  |  | 
|  | ref[0] = Scalar(0); | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[0] += data1[i]; | 
|  | VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux"); | 
|  |  | 
|  | if(PacketSize==8 && internal::unpacket_traits<typename internal::unpacket_traits<Packet>::half>::size ==4) // so far, predux_half_downto4 is only required in such a case | 
|  | { | 
|  | int HalfPacketSize = PacketSize>4 ? PacketSize/2 : PacketSize; | 
|  | for (int i=0; i<HalfPacketSize; ++i) | 
|  | ref[i] = Scalar(0); | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[i%HalfPacketSize] += data1[i]; | 
|  | internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1))); | 
|  | VERIFY(areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4"); | 
|  | } | 
|  |  | 
|  | ref[0] = Scalar(1); | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[0] *= data1[i]; | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul"); | 
|  |  | 
|  | if (PacketTraits::HasReduxp) | 
|  | { | 
|  | for (int j=0; j<PacketSize; ++j) | 
|  | { | 
|  | ref[j] = Scalar(0); | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[j] += data1[i+j*PacketSize]; | 
|  | packets[j] = internal::pload<Packet>(data1+j*PacketSize); | 
|  | } | 
|  | internal::pstore(data2, internal::preduxp(packets)); | 
|  | VERIFY(areApproxAbs(ref, data2, PacketSize, refvalue) && "internal::preduxp"); | 
|  | } | 
|  |  | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[i] = data1[PacketSize-i-1]; | 
|  | internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1))); | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && "internal::preverse"); | 
|  |  | 
|  | internal::PacketBlock<Packet> kernel; | 
|  | for (int i=0; i<PacketSize; ++i) { | 
|  | kernel.packet[i] = internal::pload<Packet>(data1+i*PacketSize); | 
|  | } | 
|  | ptranspose(kernel); | 
|  | for (int i=0; i<PacketSize; ++i) { | 
|  | internal::pstore(data2, kernel.packet[i]); | 
|  | for (int j = 0; j < PacketSize; ++j) { | 
|  | VERIFY(isApproxAbs(data2[j], data1[i+j*PacketSize], refvalue) && "ptranspose"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PacketTraits::HasBlend) { | 
|  | Packet thenPacket = internal::pload<Packet>(data1); | 
|  | Packet elsePacket = internal::pload<Packet>(data2); | 
|  | EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector; | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | selector.select[i] = i; | 
|  | } | 
|  |  | 
|  | Packet blend = internal::pblend(selector, thenPacket, elsePacket); | 
|  | EIGEN_ALIGN_MAX Scalar result[size]; | 
|  | internal::pstore(result, blend); | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | VERIFY(isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PacketTraits::HasBlend || g_vectorize_sse) { | 
|  | // pinsertfirst | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[i] = data1[i]; | 
|  | Scalar s = internal::random<Scalar>(); | 
|  | ref[0] = s; | 
|  | internal::pstore(data2, internal::pinsertfirst(internal::pload<Packet>(data1),s)); | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertfirst"); | 
|  | } | 
|  |  | 
|  | if (PacketTraits::HasBlend || g_vectorize_sse) { | 
|  | // pinsertlast | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[i] = data1[i]; | 
|  | Scalar s = internal::random<Scalar>(); | 
|  | ref[PacketSize-1] = s; | 
|  | internal::pstore(data2, internal::pinsertlast(internal::pload<Packet>(data1),s)); | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertlast"); | 
|  | } | 
|  |  | 
|  | { | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | { | 
|  | data1[i] = internal::random<Scalar>(); | 
|  | unsigned char v = internal::random<bool>() ? 0xff : 0; | 
|  | char* bytes = (char*)(data1+PacketSize+i); | 
|  | for(int k=0; k<int(sizeof(Scalar)); ++k) { | 
|  | bytes[k] = v; | 
|  | } | 
|  | } | 
|  | CHECK_CWISE2_IF(true, internal::por, internal::por); | 
|  | CHECK_CWISE2_IF(true, internal::pxor, internal::pxor); | 
|  | CHECK_CWISE2_IF(true, internal::pand, internal::pand); | 
|  | CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot); | 
|  | } | 
|  | { | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | // "if" mask | 
|  | unsigned char v = internal::random<bool>() ? 0xff : 0; | 
|  | char* bytes = (char*)(data1+i); | 
|  | for(int k=0; k<int(sizeof(Scalar)); ++k) { | 
|  | bytes[k] = v; | 
|  | } | 
|  | // "then" packet | 
|  | data1[i+PacketSize] = internal::random<Scalar>(); | 
|  | // "else" packet | 
|  | data1[i+2*PacketSize] = internal::random<Scalar>(); | 
|  | } | 
|  | CHECK_CWISE3_IF(true, internal::pselect, internal::pselect); | 
|  | } | 
|  |  | 
|  | { | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = Scalar(i); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar,typename Packet> void packetmath_real() | 
|  | { | 
|  | using std::abs; | 
|  | typedef internal::packet_traits<Scalar> PacketTraits; | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  |  | 
|  | const int size = PacketSize*4; | 
|  | EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; | 
|  |  | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3)); | 
|  | data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3)); | 
|  | } | 
|  | CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan); | 
|  |  | 
|  | CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor); | 
|  |  | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | data1[i] = internal::random<Scalar>(-1,1); | 
|  | data2[i] = internal::random<Scalar>(-1,1); | 
|  | } | 
|  | CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos); | 
|  |  | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | data1[i] = internal::random<Scalar>(-87,88); | 
|  | data2[i] = internal::random<Scalar>(-87,88); | 
|  | } | 
|  | CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp); | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); | 
|  | data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); | 
|  | } | 
|  | CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh); | 
|  | if(PacketTraits::HasExp && PacketSize>=2) | 
|  | { | 
|  | data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | data1[1] = std::numeric_limits<Scalar>::epsilon(); | 
|  | packet_helper<PacketTraits::HasExp,Packet> h; | 
|  | h.store(data2, internal::pexp(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::epsilon()), data2[1]); | 
|  |  | 
|  | data1[0] = -std::numeric_limits<Scalar>::epsilon(); | 
|  | data1[1] = 0; | 
|  | h.store(data2, internal::pexp(h.load(data1))); | 
|  | VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::epsilon()), data2[0]); | 
|  | VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]); | 
|  |  | 
|  | data1[0] = (std::numeric_limits<Scalar>::min)(); | 
|  | data1[1] = -(std::numeric_limits<Scalar>::min)(); | 
|  | h.store(data2, internal::pexp(h.load(data1))); | 
|  | VERIFY_IS_EQUAL(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]); | 
|  | VERIFY_IS_EQUAL(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]); | 
|  |  | 
|  | data1[0] = std::numeric_limits<Scalar>::denorm_min(); | 
|  | data1[1] = -std::numeric_limits<Scalar>::denorm_min(); | 
|  | h.store(data2, internal::pexp(h.load(data1))); | 
|  | VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]); | 
|  | VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]); | 
|  | } | 
|  |  | 
|  | if (PacketTraits::HasTanh) { | 
|  | // NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details. | 
|  | data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | packet_helper<internal::packet_traits<Scalar>::HasTanh,Packet> h; | 
|  | h.store(data2, internal::ptanh(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | } | 
|  |  | 
|  | #if EIGEN_HAS_C99_MATH | 
|  | { | 
|  | data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | packet_helper<internal::packet_traits<Scalar>::HasLGamma,Packet> h; | 
|  | h.store(data2, internal::plgamma(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | } | 
|  | if (internal::packet_traits<Scalar>::HasErf) { | 
|  | data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | packet_helper<internal::packet_traits<Scalar>::HasErf,Packet> h; | 
|  | h.store(data2, internal::perf(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | } | 
|  | { | 
|  | data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | packet_helper<internal::packet_traits<Scalar>::HasErfc,Packet> h; | 
|  | h.store(data2, internal::perfc(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | } | 
|  | { | 
|  | for (int i=0; i<size; ++i) { | 
|  | data1[i] = internal::random<Scalar>(0,1); | 
|  | } | 
|  | CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasNdtri, numext::ndtri, internal::pndtri); | 
|  | } | 
|  | #endif  // EIGEN_HAS_C99_MATH | 
|  |  | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | data1[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); | 
|  | data2[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); | 
|  | } | 
|  |  | 
|  | if(internal::random<float>(0,1)<0.1f) | 
|  | data1[internal::random<int>(0, PacketSize)] = 0; | 
|  | CHECK_CWISE1_IF(PacketTraits::HasSqrt, std::sqrt, internal::psqrt); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0, internal::pbessel_i0); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0e, internal::pbessel_i0e); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1, internal::pbessel_i1); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1e, internal::pbessel_i1e); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j0, internal::pbessel_j0); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j1, internal::pbessel_j1); | 
|  |  | 
|  | data1[0] = std::numeric_limits<Scalar>::infinity(); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasRsqrt, Scalar(1)/std::sqrt, internal::prsqrt); | 
|  |  | 
|  | // Use a smaller data range for the positive bessel operations as these | 
|  | // can have much more error at very small and very large values. | 
|  | for (int i=0; i<size; ++i) { | 
|  | data1[i] = internal::random<Scalar>(0.01,1) * std::pow( | 
|  | Scalar(10), internal::random<Scalar>(-1,2)); | 
|  | data2[i] = internal::random<Scalar>(0.01,1) * std::pow( | 
|  | Scalar(10), internal::random<Scalar>(-1,2)); | 
|  | } | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y0, internal::pbessel_y0); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y1, internal::pbessel_y1); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0, internal::pbessel_k0); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0e, internal::pbessel_k0e); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1, internal::pbessel_k1); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1e, internal::pbessel_k1e); | 
|  |  | 
|  | #if EIGEN_HAS_C99_MATH && (__cplusplus > 199711L) | 
|  | CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasLGamma, std::lgamma, internal::plgamma); | 
|  | CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErf, std::erf, internal::perf); | 
|  | CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc); | 
|  | data1[0] = std::numeric_limits<Scalar>::infinity(); | 
|  | data1[1] = Scalar(-1); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p); | 
|  | data1[0] = std::numeric_limits<Scalar>::infinity(); | 
|  | data1[1] = -std::numeric_limits<Scalar>::infinity(); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1); | 
|  | #endif | 
|  |  | 
|  | if(PacketSize>=2) | 
|  | { | 
|  | data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | data1[1] = std::numeric_limits<Scalar>::epsilon(); | 
|  | if(PacketTraits::HasLog) | 
|  | { | 
|  | packet_helper<PacketTraits::HasLog,Packet> h; | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::epsilon()), data2[1]); | 
|  |  | 
|  | data1[0] = -std::numeric_limits<Scalar>::epsilon(); | 
|  | data1[1] = 0; | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]); | 
|  |  | 
|  | data1[0] = (std::numeric_limits<Scalar>::min)(); | 
|  | data1[1] = -(std::numeric_limits<Scalar>::min)(); | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | VERIFY_IS_EQUAL(std::log((std::numeric_limits<Scalar>::min)()), data2[0]); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  |  | 
|  | data1[0] = std::numeric_limits<Scalar>::denorm_min(); | 
|  | data1[1] = -std::numeric_limits<Scalar>::denorm_min(); | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | // VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  |  | 
|  | data1[0] = Scalar(-1.0f); | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  |  | 
|  | data1[0] = std::numeric_limits<Scalar>::infinity(); | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | VERIFY((numext::isinf)(data2[0])); | 
|  | } | 
|  | if(PacketTraits::HasLog1p) { | 
|  | packet_helper<PacketTraits::HasLog1p,Packet> h; | 
|  | data1[0] = Scalar(-2); | 
|  | data1[1] = -std::numeric_limits<Scalar>::infinity(); | 
|  | h.store(data2, internal::plog1p(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  | } | 
|  | if(PacketTraits::HasSqrt) | 
|  | { | 
|  | packet_helper<PacketTraits::HasSqrt,Packet> h; | 
|  | data1[0] = Scalar(-1.0f); | 
|  | data1[1] = -std::numeric_limits<Scalar>::denorm_min(); | 
|  | h.store(data2, internal::psqrt(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  | } | 
|  | if(PacketTraits::HasCos) | 
|  | { | 
|  | packet_helper<PacketTraits::HasCos,Packet> h; | 
|  | for(Scalar k = 1; k<Scalar(10000)/std::numeric_limits<Scalar>::epsilon(); k*=2) | 
|  | { | 
|  | for(int k1=0;k1<=1; ++k1) | 
|  | { | 
|  | data1[0] = (2*k+k1  )*Scalar(EIGEN_PI)/2 * internal::random<Scalar>(0.8,1.2); | 
|  | data1[1] = (2*k+2+k1)*Scalar(EIGEN_PI)/2 * internal::random<Scalar>(0.8,1.2); | 
|  | h.store(data2,            internal::pcos(h.load(data1))); | 
|  | h.store(data2+PacketSize, internal::psin(h.load(data1))); | 
|  | VERIFY(data2[0]<=Scalar(1.) && data2[0]>=Scalar(-1.)); | 
|  | VERIFY(data2[1]<=Scalar(1.) && data2[1]>=Scalar(-1.)); | 
|  | VERIFY(data2[PacketSize+0]<=Scalar(1.) && data2[PacketSize+0]>=Scalar(-1.)); | 
|  | VERIFY(data2[PacketSize+1]<=Scalar(1.) && data2[PacketSize+1]>=Scalar(-1.)); | 
|  |  | 
|  | VERIFY_IS_APPROX(numext::abs2(data2[0])+numext::abs2(data2[PacketSize+0]), Scalar(1)); | 
|  | VERIFY_IS_APPROX(numext::abs2(data2[1])+numext::abs2(data2[PacketSize+1]), Scalar(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | data1[0] =  std::numeric_limits<Scalar>::infinity(); | 
|  | data1[1] = -std::numeric_limits<Scalar>::infinity(); | 
|  | h.store(data2, internal::psin(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  |  | 
|  | h.store(data2, internal::pcos(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  |  | 
|  | data1[0] =  std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | h.store(data2, internal::psin(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | h.store(data2, internal::pcos(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  |  | 
|  | data1[0] = -Scalar(0.); | 
|  | h.store(data2, internal::psin(h.load(data1))); | 
|  | VERIFY( internal::biteq(data2[0], data1[0]) ); | 
|  | h.store(data2, internal::pcos(h.load(data1))); | 
|  | VERIFY_IS_EQUAL(data2[0], Scalar(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar,typename Packet> void packetmath_notcomplex() | 
|  | { | 
|  | using std::abs; | 
|  | typedef internal::packet_traits<Scalar> PacketTraits; | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  |  | 
|  | EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; | 
|  |  | 
|  | Array<Scalar,Dynamic,1>::Map(data1, PacketSize*4).setRandom(); | 
|  |  | 
|  | ref[0] = data1[0]; | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[0] = (std::min)(ref[0],data1[i]); | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min"); | 
|  |  | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin); | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax); | 
|  |  | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax); | 
|  | CHECK_CWISE1(abs, internal::pabs); | 
|  |  | 
|  | ref[0] = data1[0]; | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[0] = (std::max)(ref[0],data1[i]); | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max"); | 
|  |  | 
|  | for (int i=0; i<PacketSize; ++i) | 
|  | ref[i] = data1[0]+Scalar(i); | 
|  | internal::pstore(data2, internal::plset<Packet>(data1[0])); | 
|  | VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset"); | 
|  |  | 
|  | { | 
|  | unsigned char* data1_bits = reinterpret_cast<unsigned char*>(data1); | 
|  | // predux_all - not needed yet | 
|  | // for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0xff; | 
|  | // VERIFY(internal::predux_all(internal::pload<Packet>(data1)) && "internal::predux_all(1111)"); | 
|  | // for(int k=0; k<PacketSize; ++k) | 
|  | // { | 
|  | //   for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x0; | 
|  | //   VERIFY( (!internal::predux_all(internal::pload<Packet>(data1))) && "internal::predux_all(0101)"); | 
|  | //   for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff; | 
|  | // } | 
|  |  | 
|  | // predux_any | 
|  | for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0x0; | 
|  | VERIFY( (!internal::predux_any(internal::pload<Packet>(data1))) && "internal::predux_any(0000)"); | 
|  | for(int k=0; k<PacketSize; ++k) | 
|  | { | 
|  | for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff; | 
|  | VERIFY( internal::predux_any(internal::pload<Packet>(data1)) && "internal::predux_any(0101)"); | 
|  | for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x00; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar,typename Packet,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) | 
|  | { | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  |  | 
|  | internal::conj_if<ConjLhs> cj0; | 
|  | internal::conj_if<ConjRhs> cj1; | 
|  | internal::conj_helper<Scalar,Scalar,ConjLhs,ConjRhs> cj; | 
|  | internal::conj_helper<Packet,Packet,ConjLhs,ConjRhs> pcj; | 
|  |  | 
|  | for(int i=0;i<PacketSize;++i) | 
|  | { | 
|  | ref[i] = cj0(data1[i]) * cj1(data2[i]); | 
|  | VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper pmul"); | 
|  | } | 
|  | internal::pstore(pval,pcj.pmul(internal::pload<Packet>(data1),internal::pload<Packet>(data2))); | 
|  | VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmul"); | 
|  |  | 
|  | for(int i=0;i<PacketSize;++i) | 
|  | { | 
|  | Scalar tmp = ref[i]; | 
|  | ref[i] += cj0(data1[i]) * cj1(data2[i]); | 
|  | VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i],data2[i],tmp)) && "conj_helper pmadd"); | 
|  | } | 
|  | internal::pstore(pval,pcj.pmadd(internal::pload<Packet>(data1),internal::pload<Packet>(data2),internal::pload<Packet>(pval))); | 
|  | VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd"); | 
|  | } | 
|  |  | 
|  | template<typename Scalar,typename Packet> void packetmath_complex() | 
|  | { | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  |  | 
|  | const int size = PacketSize*4; | 
|  | EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; | 
|  | EIGEN_ALIGN_MAX Scalar pval[PacketSize*4]; | 
|  |  | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | data1[i] = internal::random<Scalar>() * Scalar(1e2); | 
|  | data2[i] = internal::random<Scalar>() * Scalar(1e2); | 
|  | } | 
|  |  | 
|  | test_conj_helper<Scalar,Packet,false,false> (data1,data2,ref,pval); | 
|  | test_conj_helper<Scalar,Packet,false,true>  (data1,data2,ref,pval); | 
|  | test_conj_helper<Scalar,Packet,true,false>  (data1,data2,ref,pval); | 
|  | test_conj_helper<Scalar,Packet,true,true>   (data1,data2,ref,pval); | 
|  |  | 
|  | { | 
|  | for(int i=0;i<PacketSize;++i) | 
|  | ref[i] = Scalar(std::imag(data1[i]),std::real(data1[i])); | 
|  | internal::pstore(pval,internal::pcplxflip(internal::pload<Packet>(data1))); | 
|  | VERIFY(areApprox(ref, pval, PacketSize) && "pcplxflip"); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar,typename Packet> void packetmath_scatter_gather() | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  | EIGEN_ALIGN_MAX Scalar data1[PacketSize]; | 
|  | RealScalar refvalue = 0; | 
|  | for (int i=0; i<PacketSize; ++i) { | 
|  | data1[i] = internal::random<Scalar>()/RealScalar(PacketSize); | 
|  | } | 
|  |  | 
|  | int stride = internal::random<int>(1,20); | 
|  |  | 
|  | EIGEN_ALIGN_MAX Scalar buffer[PacketSize*20]; | 
|  | memset(buffer, 0, 20*PacketSize*sizeof(Scalar)); | 
|  | Packet packet = internal::pload<Packet>(data1); | 
|  | internal::pscatter<Scalar, Packet>(buffer, packet, stride); | 
|  |  | 
|  | for (int i = 0; i < PacketSize*20; ++i) { | 
|  | if ((i%stride) == 0 && i<stride*PacketSize) { | 
|  | VERIFY(isApproxAbs(buffer[i], data1[i/stride], refvalue) && "pscatter"); | 
|  | } else { | 
|  | VERIFY(isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter"); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i=0; i<PacketSize*7; ++i) { | 
|  | buffer[i] = internal::random<Scalar>()/RealScalar(PacketSize); | 
|  | } | 
|  | packet = internal::pgather<Scalar, Packet>(buffer, 7); | 
|  | internal::pstore(data1, packet); | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | VERIFY(isApproxAbs(data1[i], buffer[i*7], refvalue) && "pgather"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template< | 
|  | typename Scalar, | 
|  | typename PacketType, | 
|  | bool IsComplex = NumTraits<Scalar>::IsComplex, | 
|  | bool IsInteger = NumTraits<Scalar>::IsInteger> | 
|  | struct runall; | 
|  |  | 
|  | template<typename Scalar,typename PacketType> | 
|  | struct runall<Scalar,PacketType,false,false> { // i.e. float or double | 
|  | static void run() { | 
|  | packetmath<Scalar,PacketType>(); | 
|  | packetmath_scatter_gather<Scalar,PacketType>(); | 
|  | packetmath_notcomplex<Scalar,PacketType>(); | 
|  | packetmath_real<Scalar,PacketType>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar,typename PacketType> | 
|  | struct runall<Scalar,PacketType,false,true> { // i.e. int | 
|  | static void run() { | 
|  | packetmath<Scalar,PacketType>(); | 
|  | packetmath_scatter_gather<Scalar,PacketType>(); | 
|  | packetmath_notcomplex<Scalar,PacketType>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar,typename PacketType> | 
|  | struct runall<Scalar,PacketType,true,false> { // i.e. complex | 
|  | static void run() { | 
|  | packetmath<Scalar,PacketType>(); | 
|  | packetmath_scatter_gather<Scalar,PacketType>(); | 
|  | packetmath_complex<Scalar,PacketType>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template< | 
|  | typename Scalar, | 
|  | typename PacketType = typename internal::packet_traits<Scalar>::type, | 
|  | bool Vectorized = internal::packet_traits<Scalar>::Vectorizable, | 
|  | bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value > | 
|  | struct runner; | 
|  |  | 
|  | template<typename Scalar,typename PacketType> | 
|  | struct runner<Scalar,PacketType,true,true> | 
|  | { | 
|  | static void run() { | 
|  | runall<Scalar,PacketType>::run(); | 
|  | runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar,typename PacketType> | 
|  | struct runner<Scalar,PacketType,true,false> | 
|  | { | 
|  | static void run() { | 
|  | runall<Scalar,PacketType>::run(); | 
|  | runall<Scalar,Scalar>::run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar,typename PacketType> | 
|  | struct runner<Scalar,PacketType,false,false> | 
|  | { | 
|  | static void run() { | 
|  | runall<Scalar,PacketType>::run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | EIGEN_DECLARE_TEST(packetmath) | 
|  | { | 
|  | g_first_pass = true; | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  |  | 
|  | CALL_SUBTEST_1( runner<float>::run() ); | 
|  | CALL_SUBTEST_2( runner<double>::run() ); | 
|  | CALL_SUBTEST_3( runner<int>::run() ); | 
|  | CALL_SUBTEST_4( runner<std::complex<float> >::run() ); | 
|  | CALL_SUBTEST_5( runner<std::complex<double> >::run() ); | 
|  | CALL_SUBTEST_6(( packetmath<half,internal::packet_traits<half>::type>() )); | 
|  | g_first_pass = false; | 
|  | } | 
|  | } |