|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014-2015 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // Copyright (C) 2015 Navdeep Jaitly <ndjaitly@google.com> | 
|  | // Copyright (C) 2014 Eric Martin <eric@ericmart.in> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_GPU_H | 
|  | #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_GPU_H | 
|  |  | 
|  | #if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC) | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template<typename Scalar, typename Index, typename LhsMapper, | 
|  | typename RhsMapper, typename OutputMapper, bool needs_edge_check> | 
|  | __device__ EIGEN_STRONG_INLINE void | 
|  | EigenContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs, | 
|  | const OutputMapper output, Scalar* lhs_shmem, Scalar* rhs_shmem, | 
|  | const Index m_size, const Index n_size, const Index k_size) { | 
|  |  | 
|  | const Index m_block_idx = blockIdx.x; | 
|  | const Index n_block_idx = blockIdx.y; | 
|  |  | 
|  | const Index base_m = 64 * m_block_idx; | 
|  | const Index base_n = 64 * n_block_idx; | 
|  |  | 
|  | // declare and initialize 64 registers for output 8x8 block | 
|  |  | 
|  | // prefetch registers | 
|  | Scalar lhs_pf0; | 
|  | Scalar lhs_pf1; | 
|  | Scalar lhs_pf2; | 
|  | Scalar lhs_pf3; | 
|  | Scalar lhs_pf4; | 
|  | Scalar lhs_pf5; | 
|  | Scalar lhs_pf6; | 
|  | Scalar lhs_pf7; | 
|  |  | 
|  | Scalar rhs_pf0; | 
|  | Scalar rhs_pf1; | 
|  | Scalar rhs_pf2; | 
|  | Scalar rhs_pf3; | 
|  | Scalar rhs_pf4; | 
|  | Scalar rhs_pf5; | 
|  | Scalar rhs_pf6; | 
|  | Scalar rhs_pf7; | 
|  |  | 
|  | // shared memory is formatted | 
|  | // (contract idx in block, nocontract idx in block, block idx) | 
|  | // where block idx is column major. This transposition limits the number of | 
|  | // bank conflicts when reading the LHS. The core idea is that since the contracting | 
|  | // index is shared by both sides, then the contracting index should be in threadIdx.x. | 
|  |  | 
|  | // On the LHS, we pad each row inside of each block with an extra element. This makes | 
|  | // each block 8 rows of 9 elements, which is 72 elements. This gives no bank conflicts | 
|  | // on writes and very few 2-way conflicts on reads. There is an 8x8 grid of these blocks. | 
|  |  | 
|  | // On the RHS we just add 8 padding elements to the end of each block. This gives no bank | 
|  | // conflicts on writes and also none on reads. | 
|  |  | 
|  | // storage indices | 
|  | const Index lhs_store_idx_base = threadIdx.y * 72 + threadIdx.x * 9 + threadIdx.z; | 
|  | const Index rhs_store_idx_base = threadIdx.y * 72 + threadIdx.z * 8 + threadIdx.x; | 
|  |  | 
|  | const Index lhs_store_idx_0 = lhs_store_idx_base + 576 * 0; | 
|  | const Index lhs_store_idx_1 = lhs_store_idx_base + 576 * 1; | 
|  | const Index lhs_store_idx_2 = lhs_store_idx_base + 576 * 2; | 
|  | const Index lhs_store_idx_3 = lhs_store_idx_base + 576 * 3; | 
|  | const Index lhs_store_idx_4 = lhs_store_idx_base + 576 * 4; | 
|  | const Index lhs_store_idx_5 = lhs_store_idx_base + 576 * 5; | 
|  | const Index lhs_store_idx_6 = lhs_store_idx_base + 576 * 6; | 
|  | const Index lhs_store_idx_7 = lhs_store_idx_base + 576 * 7; | 
|  |  | 
|  | const Index rhs_store_idx_0 = rhs_store_idx_base + 576 * 0; | 
|  | const Index rhs_store_idx_1 = rhs_store_idx_base + 576 * 1; | 
|  | const Index rhs_store_idx_2 = rhs_store_idx_base + 576 * 2; | 
|  | const Index rhs_store_idx_3 = rhs_store_idx_base + 576 * 3; | 
|  | const Index rhs_store_idx_4 = rhs_store_idx_base + 576 * 4; | 
|  | const Index rhs_store_idx_5 = rhs_store_idx_base + 576 * 5; | 
|  | const Index rhs_store_idx_6 = rhs_store_idx_base + 576 * 6; | 
|  | const Index rhs_store_idx_7 = rhs_store_idx_base + 576 * 7; | 
|  |  | 
|  | // in the loading code, the following variables are important: | 
|  | // threadIdx.x: the vertical position in an 8x8 block | 
|  | // threadIdx.y: the vertical index of the 8x8 block in the grid | 
|  | // threadIdx.z: the horizontal position in an 8x8 block | 
|  | // k: the horizontal index of the 8x8 block in the grid | 
|  | // | 
|  | // The k parameter is implicit (it was the loop counter for a loop that went | 
|  | // from 0 to <8, but now that loop is unrolled in the below code. | 
|  |  | 
|  | const Index load_idx_vert = threadIdx.x + 8 * threadIdx.y; | 
|  | const Index lhs_vert = base_m + load_idx_vert; | 
|  |  | 
|  | #define prefetchIntoRegisters(base_k)                           \ | 
|  | {                                                             \ | 
|  | lhs_pf0 = conv(0);                                          \ | 
|  | lhs_pf1 = conv(0);                                          \ | 
|  | lhs_pf2 = conv(0);                                          \ | 
|  | lhs_pf3 = conv(0);                                          \ | 
|  | lhs_pf4 = conv(0);                                          \ | 
|  | lhs_pf5 = conv(0);                                          \ | 
|  | lhs_pf6 = conv(0);                                          \ | 
|  | lhs_pf7 = conv(0);                                          \ | 
|  | \ | 
|  | rhs_pf0 = conv(0);                                          \ | 
|  | rhs_pf1 = conv(0);                                          \ | 
|  | rhs_pf2 = conv(0);                                          \ | 
|  | rhs_pf3 = conv(0);                                          \ | 
|  | rhs_pf4 = conv(0);                                          \ | 
|  | rhs_pf5 = conv(0);                                          \ | 
|  | rhs_pf6 = conv(0);                                          \ | 
|  | rhs_pf7 = conv(0);                                          \ | 
|  | \ | 
|  | if (!needs_edge_check || lhs_vert < m_size) {               \ | 
|  | const Index lhs_horiz_0 = base_k + threadIdx.z + 0 * 8;   \ | 
|  | const Index lhs_horiz_1 = base_k + threadIdx.z + 1 * 8;   \ | 
|  | const Index lhs_horiz_2 = base_k + threadIdx.z + 2 * 8;   \ | 
|  | const Index lhs_horiz_3 = base_k + threadIdx.z + 3 * 8;   \ | 
|  | const Index lhs_horiz_4 = base_k + threadIdx.z + 4 * 8;   \ | 
|  | const Index lhs_horiz_5 = base_k + threadIdx.z + 5 * 8;   \ | 
|  | const Index lhs_horiz_6 = base_k + threadIdx.z + 6 * 8;   \ | 
|  | const Index lhs_horiz_7 = base_k + threadIdx.z + 7 * 8;   \ | 
|  | \ | 
|  | if (!needs_edge_check || lhs_horiz_7 < k_size) {          \ | 
|  | lhs_pf0 = lhs(lhs_vert, lhs_horiz_0);                   \ | 
|  | lhs_pf1 = lhs(lhs_vert, lhs_horiz_1);                   \ | 
|  | lhs_pf2 = lhs(lhs_vert, lhs_horiz_2);                   \ | 
|  | lhs_pf3 = lhs(lhs_vert, lhs_horiz_3);                   \ | 
|  | lhs_pf4 = lhs(lhs_vert, lhs_horiz_4);                   \ | 
|  | lhs_pf5 = lhs(lhs_vert, lhs_horiz_5);                   \ | 
|  | lhs_pf6 = lhs(lhs_vert, lhs_horiz_6);                   \ | 
|  | lhs_pf7 = lhs(lhs_vert, lhs_horiz_7);                   \ | 
|  | } else if (lhs_horiz_6 < k_size) {                        \ | 
|  | lhs_pf0 = lhs(lhs_vert, lhs_horiz_0);                   \ | 
|  | lhs_pf1 = lhs(lhs_vert, lhs_horiz_1);                   \ | 
|  | lhs_pf2 = lhs(lhs_vert, lhs_horiz_2);                   \ | 
|  | lhs_pf3 = lhs(lhs_vert, lhs_horiz_3);                   \ | 
|  | lhs_pf4 = lhs(lhs_vert, lhs_horiz_4);                   \ | 
|  | lhs_pf5 = lhs(lhs_vert, lhs_horiz_5);                   \ | 
|  | lhs_pf6 = lhs(lhs_vert, lhs_horiz_6);                   \ | 
|  | } else if (lhs_horiz_5 < k_size) {                        \ | 
|  | lhs_pf0 = lhs(lhs_vert, lhs_horiz_0);                   \ | 
|  | lhs_pf1 = lhs(lhs_vert, lhs_horiz_1);                   \ | 
|  | lhs_pf2 = lhs(lhs_vert, lhs_horiz_2);                   \ | 
|  | lhs_pf3 = lhs(lhs_vert, lhs_horiz_3);                   \ | 
|  | lhs_pf4 = lhs(lhs_vert, lhs_horiz_4);                   \ | 
|  | lhs_pf5 = lhs(lhs_vert, lhs_horiz_5);                   \ | 
|  | } else if (lhs_horiz_4 < k_size) {                        \ | 
|  | lhs_pf0 = lhs(lhs_vert, lhs_horiz_0);                   \ | 
|  | lhs_pf1 = lhs(lhs_vert, lhs_horiz_1);                   \ | 
|  | lhs_pf2 = lhs(lhs_vert, lhs_horiz_2);                   \ | 
|  | lhs_pf3 = lhs(lhs_vert, lhs_horiz_3);                   \ | 
|  | lhs_pf4 = lhs(lhs_vert, lhs_horiz_4);                   \ | 
|  | } else if (lhs_horiz_3 < k_size) {                        \ | 
|  | lhs_pf0 = lhs(lhs_vert, lhs_horiz_0);                   \ | 
|  | lhs_pf1 = lhs(lhs_vert, lhs_horiz_1);                   \ | 
|  | lhs_pf2 = lhs(lhs_vert, lhs_horiz_2);                   \ | 
|  | lhs_pf3 = lhs(lhs_vert, lhs_horiz_3);                   \ | 
|  | } else if (lhs_horiz_2 < k_size) {                        \ | 
|  | lhs_pf0 = lhs(lhs_vert, lhs_horiz_0);                   \ | 
|  | lhs_pf1 = lhs(lhs_vert, lhs_horiz_1);                   \ | 
|  | lhs_pf2 = lhs(lhs_vert, lhs_horiz_2);                   \ | 
|  | } else if (lhs_horiz_1 < k_size) {                        \ | 
|  | lhs_pf0 = lhs(lhs_vert, lhs_horiz_0);                   \ | 
|  | lhs_pf1 = lhs(lhs_vert, lhs_horiz_1);                   \ | 
|  | } else if (lhs_horiz_0 < k_size) {                        \ | 
|  | lhs_pf0 = lhs(lhs_vert, lhs_horiz_0);                   \ | 
|  | }                                                         \ | 
|  | }                                                           \ | 
|  | \ | 
|  | const Index rhs_vert = base_k + load_idx_vert;              \ | 
|  | if (!needs_edge_check || rhs_vert < k_size) {               \ | 
|  | const Index rhs_horiz_0 = base_n + threadIdx.z + 0 * 8;   \ | 
|  | const Index rhs_horiz_1 = base_n + threadIdx.z + 1 * 8;   \ | 
|  | const Index rhs_horiz_2 = base_n + threadIdx.z + 2 * 8;   \ | 
|  | const Index rhs_horiz_3 = base_n + threadIdx.z + 3 * 8;   \ | 
|  | const Index rhs_horiz_4 = base_n + threadIdx.z + 4 * 8;   \ | 
|  | const Index rhs_horiz_5 = base_n + threadIdx.z + 5 * 8;   \ | 
|  | const Index rhs_horiz_6 = base_n + threadIdx.z + 6 * 8;   \ | 
|  | const Index rhs_horiz_7 = base_n + threadIdx.z + 7 * 8;   \ | 
|  | \ | 
|  | if (rhs_horiz_7 < n_size) {                               \ | 
|  | rhs_pf0 = rhs(rhs_vert, rhs_horiz_0);                   \ | 
|  | rhs_pf1 = rhs(rhs_vert, rhs_horiz_1);                   \ | 
|  | rhs_pf2 = rhs(rhs_vert, rhs_horiz_2);                   \ | 
|  | rhs_pf3 = rhs(rhs_vert, rhs_horiz_3);                   \ | 
|  | rhs_pf4 = rhs(rhs_vert, rhs_horiz_4);                   \ | 
|  | rhs_pf5 = rhs(rhs_vert, rhs_horiz_5);                   \ | 
|  | rhs_pf6 = rhs(rhs_vert, rhs_horiz_6);                   \ | 
|  | rhs_pf7 = rhs(rhs_vert, rhs_horiz_7);                   \ | 
|  | } else if (rhs_horiz_6 < n_size) {                        \ | 
|  | rhs_pf0 = rhs(rhs_vert, rhs_horiz_0);                   \ | 
|  | rhs_pf1 = rhs(rhs_vert, rhs_horiz_1);                   \ | 
|  | rhs_pf2 = rhs(rhs_vert, rhs_horiz_2);                   \ | 
|  | rhs_pf3 = rhs(rhs_vert, rhs_horiz_3);                   \ | 
|  | rhs_pf4 = rhs(rhs_vert, rhs_horiz_4);                   \ | 
|  | rhs_pf5 = rhs(rhs_vert, rhs_horiz_5);                   \ | 
|  | rhs_pf6 = rhs(rhs_vert, rhs_horiz_6);                   \ | 
|  | } else if (rhs_horiz_5 < n_size) {                        \ | 
|  | rhs_pf0 = rhs(rhs_vert, rhs_horiz_0);                   \ | 
|  | rhs_pf1 = rhs(rhs_vert, rhs_horiz_1);                   \ | 
|  | rhs_pf2 = rhs(rhs_vert, rhs_horiz_2);                   \ | 
|  | rhs_pf3 = rhs(rhs_vert, rhs_horiz_3);                   \ | 
|  | rhs_pf4 = rhs(rhs_vert, rhs_horiz_4);                   \ | 
|  | rhs_pf5 = rhs(rhs_vert, rhs_horiz_5);                   \ | 
|  | } else if (rhs_horiz_4 < n_size) {                        \ | 
|  | rhs_pf0 = rhs(rhs_vert, rhs_horiz_0);                   \ | 
|  | rhs_pf1 = rhs(rhs_vert, rhs_horiz_1);                   \ | 
|  | rhs_pf2 = rhs(rhs_vert, rhs_horiz_2);                   \ | 
|  | rhs_pf3 = rhs(rhs_vert, rhs_horiz_3);                   \ | 
|  | rhs_pf4 = rhs(rhs_vert, rhs_horiz_4);                   \ | 
|  | } else if (rhs_horiz_3 < n_size) {                        \ | 
|  | rhs_pf0 = rhs(rhs_vert, rhs_horiz_0);                   \ | 
|  | rhs_pf1 = rhs(rhs_vert, rhs_horiz_1);                   \ | 
|  | rhs_pf2 = rhs(rhs_vert, rhs_horiz_2);                   \ | 
|  | rhs_pf3 = rhs(rhs_vert, rhs_horiz_3);                   \ | 
|  | } else if (rhs_horiz_2 < n_size) {                        \ | 
|  | rhs_pf0 = rhs(rhs_vert, rhs_horiz_0);                   \ | 
|  | rhs_pf1 = rhs(rhs_vert, rhs_horiz_1);                   \ | 
|  | rhs_pf2 = rhs(rhs_vert, rhs_horiz_2);                   \ | 
|  | } else if (rhs_horiz_1 < n_size) {                        \ | 
|  | rhs_pf0 = rhs(rhs_vert, rhs_horiz_0);                   \ | 
|  | rhs_pf1 = rhs(rhs_vert, rhs_horiz_1);                   \ | 
|  | } else if (rhs_horiz_0 < n_size) {                        \ | 
|  | rhs_pf0 = rhs(rhs_vert, rhs_horiz_0);                   \ | 
|  | }                                                         \ | 
|  | }                                                           \ | 
|  | }                                                             \ | 
|  |  | 
|  | #define writeRegToShmem(_)                      \ | 
|  | lhs_shmem[lhs_store_idx_0] = lhs_pf0;         \ | 
|  | rhs_shmem[rhs_store_idx_0] = rhs_pf0;         \ | 
|  | \ | 
|  | lhs_shmem[lhs_store_idx_1] = lhs_pf1;         \ | 
|  | rhs_shmem[rhs_store_idx_1] = rhs_pf1;         \ | 
|  | \ | 
|  | lhs_shmem[lhs_store_idx_2] = lhs_pf2;         \ | 
|  | rhs_shmem[rhs_store_idx_2] = rhs_pf2;         \ | 
|  | \ | 
|  | lhs_shmem[lhs_store_idx_3] = lhs_pf3;         \ | 
|  | rhs_shmem[rhs_store_idx_3] = rhs_pf3;         \ | 
|  | \ | 
|  | lhs_shmem[lhs_store_idx_4] = lhs_pf4;         \ | 
|  | rhs_shmem[rhs_store_idx_4] = rhs_pf4;         \ | 
|  | \ | 
|  | lhs_shmem[lhs_store_idx_5] = lhs_pf5;         \ | 
|  | rhs_shmem[rhs_store_idx_5] = rhs_pf5;         \ | 
|  | \ | 
|  | lhs_shmem[lhs_store_idx_6] = lhs_pf6;         \ | 
|  | rhs_shmem[rhs_store_idx_6] = rhs_pf6;         \ | 
|  | \ | 
|  | lhs_shmem[lhs_store_idx_7] = lhs_pf7;         \ | 
|  | rhs_shmem[rhs_store_idx_7] = rhs_pf7;         \ | 
|  |  | 
|  | // declare and initialize result array | 
|  | #define res(i, j) _res_##i##j | 
|  | #define initResultRow(i)                        \ | 
|  | Scalar res(i, 0) = conv(0);                   \ | 
|  | Scalar res(i, 1) = conv(0);                   \ | 
|  | Scalar res(i, 2) = conv(0);                   \ | 
|  | Scalar res(i, 3) = conv(0);                   \ | 
|  | Scalar res(i, 4) = conv(0);                   \ | 
|  | Scalar res(i, 5) = conv(0);                   \ | 
|  | Scalar res(i, 6) = conv(0);                   \ | 
|  | Scalar res(i, 7) = conv(0);                   \ | 
|  |  | 
|  | internal::scalar_cast_op<int, Scalar> conv; | 
|  | initResultRow(0); | 
|  | initResultRow(1); | 
|  | initResultRow(2); | 
|  | initResultRow(3); | 
|  | initResultRow(4); | 
|  | initResultRow(5); | 
|  | initResultRow(6); | 
|  | initResultRow(7); | 
|  | #undef initResultRow | 
|  |  | 
|  | for (Index base_k = 0; base_k < k_size; base_k += 64) { | 
|  | // wait for previous iteration to finish with shmem. Despite common sense, | 
|  | // the code is a bit faster with this here then at bottom of loop | 
|  | __syncthreads(); | 
|  |  | 
|  | prefetchIntoRegisters(base_k); | 
|  | writeRegToShmem(); | 
|  |  | 
|  | #undef prefetchIntoRegisters | 
|  | #undef writeRegToShmem | 
|  |  | 
|  | // wait for shared mem packing to be done before starting computation | 
|  | __syncthreads(); | 
|  |  | 
|  | // compute 8x8 matrix product by outer product. This involves packing one column | 
|  | // of LHS and one row of RHS into registers (takes 16 registers). | 
|  |  | 
|  | #define lcol(i) _lcol##i | 
|  | Scalar lcol(0); | 
|  | Scalar lcol(1); | 
|  | Scalar lcol(2); | 
|  | Scalar lcol(3); | 
|  | Scalar lcol(4); | 
|  | Scalar lcol(5); | 
|  | Scalar lcol(6); | 
|  | Scalar lcol(7); | 
|  |  | 
|  | #define rrow(j) _rrow##j | 
|  | Scalar rrow(0); | 
|  | Scalar rrow(1); | 
|  | Scalar rrow(2); | 
|  | Scalar rrow(3); | 
|  | Scalar rrow(4); | 
|  | Scalar rrow(5); | 
|  | Scalar rrow(6); | 
|  | Scalar rrow(7); | 
|  |  | 
|  | // Now x corresponds to k, y to m, and z to n | 
|  | const Scalar* lhs_block = &lhs_shmem[threadIdx.x + 9 * threadIdx.y]; | 
|  | const Scalar* rhs_block = &rhs_shmem[threadIdx.x + 8 * threadIdx.z]; | 
|  |  | 
|  | #define lhs_element(i, j) lhs_block[72 * ((i) + 8 * (j))] | 
|  | #define rhs_element(i, j) rhs_block[72 * ((i) + 8 * (j))] | 
|  |  | 
|  | #define loadData(i, j)                          \ | 
|  | lcol(0) = lhs_element(0, j);               \ | 
|  | rrow(0) = rhs_element(i, 0);               \ | 
|  | lcol(1) = lhs_element(1, j);               \ | 
|  | rrow(1) = rhs_element(i, 1);               \ | 
|  | lcol(2) = lhs_element(2, j);               \ | 
|  | rrow(2) = rhs_element(i, 2);               \ | 
|  | lcol(3) = lhs_element(3, j);               \ | 
|  | rrow(3) = rhs_element(i, 3);               \ | 
|  | lcol(4) = lhs_element(4, j);               \ | 
|  | rrow(4) = rhs_element(i, 4);               \ | 
|  | lcol(5) = lhs_element(5, j);               \ | 
|  | rrow(5) = rhs_element(i, 5);               \ | 
|  | lcol(6) = lhs_element(6, j);               \ | 
|  | rrow(6) = rhs_element(i, 6);               \ | 
|  | lcol(7) = lhs_element(7, j);               \ | 
|  | rrow(7) = rhs_element(i, 7);               \ | 
|  |  | 
|  | #define computeCol(j)                           \ | 
|  | res(0, j) += lcol(0) * rrow(j);             \ | 
|  | res(1, j) += lcol(1) * rrow(j);             \ | 
|  | res(2, j) += lcol(2) * rrow(j);             \ | 
|  | res(3, j) += lcol(3) * rrow(j);             \ | 
|  | res(4, j) += lcol(4) * rrow(j);             \ | 
|  | res(5, j) += lcol(5) * rrow(j);             \ | 
|  | res(6, j) += lcol(6) * rrow(j);             \ | 
|  | res(7, j) += lcol(7) * rrow(j);             \ | 
|  |  | 
|  | #define computePass(i)                          \ | 
|  | loadData(i, i);                             \ | 
|  | \ | 
|  | computeCol(0);                              \ | 
|  | computeCol(1);                              \ | 
|  | computeCol(2);                              \ | 
|  | computeCol(3);                              \ | 
|  | computeCol(4);                              \ | 
|  | computeCol(5);                              \ | 
|  | computeCol(6);                              \ | 
|  | computeCol(7);                              \ | 
|  |  | 
|  | computePass(0); | 
|  | computePass(1); | 
|  | computePass(2); | 
|  | computePass(3); | 
|  | computePass(4); | 
|  | computePass(5); | 
|  | computePass(6); | 
|  | computePass(7); | 
|  |  | 
|  | #undef lcol | 
|  | #undef rrow | 
|  | #undef lhs_element | 
|  | #undef rhs_element | 
|  | #undef loadData | 
|  | #undef computeCol | 
|  | #undef computePass | 
|  | } // end loop over k | 
|  |  | 
|  | // we've now iterated over all of the large (ie width 64) k blocks and | 
|  | // accumulated results in registers. At this point thread (x, y, z) contains | 
|  | // the sum across all big k blocks of the product of little k block of index (x, y) | 
|  | // with block of index (y, z). To compute the final output, we need to reduce | 
|  | // the 8 threads over y by summation. | 
|  | #if defined(EIGEN_HIPCC) || (defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000) | 
|  | #define shuffleInc(i, j, mask) res(i, j) += __shfl_xor(res(i, j), mask) | 
|  | #else | 
|  | #define shuffleInc(i, j, mask) res(i, j) += __shfl_xor_sync(0xFFFFFFFF, res(i, j), mask) | 
|  | #endif | 
|  |  | 
|  | #define reduceRow(i, mask)                      \ | 
|  | shuffleInc(i, 0, mask);                       \ | 
|  | shuffleInc(i, 1, mask);                       \ | 
|  | shuffleInc(i, 2, mask);                       \ | 
|  | shuffleInc(i, 3, mask);                       \ | 
|  | shuffleInc(i, 4, mask);                       \ | 
|  | shuffleInc(i, 5, mask);                       \ | 
|  | shuffleInc(i, 6, mask);                       \ | 
|  | shuffleInc(i, 7, mask);                       \ | 
|  |  | 
|  | #define reduceMatrix(mask)                      \ | 
|  | reduceRow(0, mask);                           \ | 
|  | reduceRow(1, mask);                           \ | 
|  | reduceRow(2, mask);                           \ | 
|  | reduceRow(3, mask);                           \ | 
|  | reduceRow(4, mask);                           \ | 
|  | reduceRow(5, mask);                           \ | 
|  | reduceRow(6, mask);                           \ | 
|  | reduceRow(7, mask);                           \ | 
|  |  | 
|  | // actually perform the reduction, now each thread of index (_, y, z) | 
|  | // contains the correct values in its registers that belong in the output | 
|  | // block | 
|  | reduceMatrix(1); | 
|  | reduceMatrix(2); | 
|  | reduceMatrix(4); | 
|  |  | 
|  | #undef shuffleInc | 
|  | #undef reduceRow | 
|  | #undef reduceMatrix | 
|  |  | 
|  | // now we need to copy the 64 values into main memory. We can't split work | 
|  | // among threads because all variables are in registers. There's 2 ways | 
|  | // to do this: | 
|  | // (1) have 1 thread do 64 writes from registers into global memory | 
|  | // (2) have 1 thread do 64 writes into shared memory, and then 8 threads | 
|  | //     each do 8 writes into global memory. We can just overwrite the shared | 
|  | //     memory from the problem we just solved. | 
|  | // (2) is slightly faster than (1) due to less branching and more ILP | 
|  |  | 
|  | // TODO: won't yield much gain, but could just use currently unused shared mem | 
|  | //       and then we won't have to sync | 
|  | // wait for shared mem to be out of use | 
|  | __syncthreads(); | 
|  |  | 
|  | #define writeResultShmem(i, j)                                          \ | 
|  | lhs_shmem[i + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j] = res(i, j); \ | 
|  |  | 
|  | #define writeRow(i)                             \ | 
|  | writeResultShmem(i, 0);                       \ | 
|  | writeResultShmem(i, 1);                       \ | 
|  | writeResultShmem(i, 2);                       \ | 
|  | writeResultShmem(i, 3);                       \ | 
|  | writeResultShmem(i, 4);                       \ | 
|  | writeResultShmem(i, 5);                       \ | 
|  | writeResultShmem(i, 6);                       \ | 
|  | writeResultShmem(i, 7);                       \ | 
|  |  | 
|  | if (threadIdx.x == 0) { | 
|  | writeRow(0); | 
|  | writeRow(1); | 
|  | writeRow(2); | 
|  | writeRow(3); | 
|  | writeRow(4); | 
|  | writeRow(5); | 
|  | writeRow(6); | 
|  | writeRow(7); | 
|  | } | 
|  | #undef writeResultShmem | 
|  | #undef writeRow | 
|  |  | 
|  | const int max_i_write = numext::mini((int)((m_size - base_m - threadIdx.y + 7) / 8), 8); | 
|  | const int max_j_write = numext::mini((int)((n_size - base_n - threadIdx.z + 7) / 8), 8); | 
|  |  | 
|  | if (threadIdx.x < max_i_write) { | 
|  | if (max_j_write == 8) { | 
|  | // TODO: can i trade bank conflicts for coalesced writes? | 
|  | Scalar val0 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 0]; | 
|  | Scalar val1 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 1]; | 
|  | Scalar val2 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 2]; | 
|  | Scalar val3 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 3]; | 
|  | Scalar val4 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 4]; | 
|  | Scalar val5 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 5]; | 
|  | Scalar val6 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 6]; | 
|  | Scalar val7 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 7]; | 
|  |  | 
|  | output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 0) = val0; | 
|  | output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 1) = val1; | 
|  | output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 2) = val2; | 
|  | output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 3) = val3; | 
|  | output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 4) = val4; | 
|  | output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 5) = val5; | 
|  | output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 6) = val6; | 
|  | output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 7) = val7; | 
|  | } else { | 
|  | #pragma unroll 7 | 
|  | for (int j = 0; j < max_j_write; j++) { | 
|  | Scalar val = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j]; | 
|  | output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * j) = val; | 
|  | } | 
|  | } | 
|  | } | 
|  | #undef res | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Scalar, typename Index, typename LhsMapper, | 
|  | typename RhsMapper, typename OutputMapper> | 
|  | __global__ void | 
|  | #if defined(EIGEN_HIPCC) | 
|  | __launch_bounds__(512, 1) | 
|  | #else | 
|  | __launch_bounds__(512) | 
|  | #endif | 
|  | EigenContractionKernel(const LhsMapper lhs, const RhsMapper rhs, | 
|  | const OutputMapper output, | 
|  | const Index m_size, const Index n_size, const Index k_size) { | 
|  | __shared__ Scalar lhs_shmem[72 * 64]; | 
|  | __shared__ Scalar rhs_shmem[72 * 64]; | 
|  |  | 
|  | const Index m_block_idx = blockIdx.x; | 
|  | const Index n_block_idx = blockIdx.y; | 
|  |  | 
|  | const Index base_m = 64 * m_block_idx; | 
|  | const Index base_n = 64 * n_block_idx; | 
|  |  | 
|  | if (base_m + 63 < m_size && base_n + 63 < n_size) { | 
|  | EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size); | 
|  | } else { | 
|  | EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Index, typename LhsMapper, | 
|  | typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY, | 
|  | bool CHECK_RHS_BOUNDARY> | 
|  | __device__ EIGEN_STRONG_INLINE void | 
|  | EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rhs, | 
|  | const OutputMapper output, float2 lhs_shmem2[][16], | 
|  | float2 rhs_shmem2[][8], const Index m_size, | 
|  | const Index n_size, const Index k_size, | 
|  | const Index base_m, const Index base_n) { | 
|  |  | 
|  | // prefetch registers | 
|  | float4 lhs_pf0, rhs_pf0; | 
|  |  | 
|  | float4 results[4]; | 
|  | for (int i=0; i < 4; i++) { | 
|  | results[i].x = results[i].y = results[i].z = results[i].w = 0; | 
|  | } | 
|  |  | 
|  | #define prefetch_lhs(reg, row, col)                            \ | 
|  | if (!CHECK_LHS_BOUNDARY) {                                 \ | 
|  | if (col < k_size) {                                      \ | 
|  | reg =lhs.template loadPacket<float4,Unaligned>(row, col);     \ | 
|  | }                                                        \ | 
|  | } else {                                                   \ | 
|  | if (col < k_size) {                                      \ | 
|  | if (row + 3 < m_size) {                                \ | 
|  | reg =lhs.template loadPacket<float4,Unaligned>(row, col);   \ | 
|  | } else if (row + 2 < m_size) {                         \ | 
|  | reg.x =lhs(row + 0, col);                            \ | 
|  | reg.y =lhs(row + 1, col);                            \ | 
|  | reg.z =lhs(row + 2, col);                            \ | 
|  | } else if (row + 1 < m_size) {                         \ | 
|  | reg.x =lhs(row + 0, col);                            \ | 
|  | reg.y =lhs(row + 1, col);                            \ | 
|  | } else if (row  < m_size) {                            \ | 
|  | reg.x =lhs(row + 0, col);                            \ | 
|  | }                                                      \ | 
|  | }                                                        \ | 
|  | }							       \ | 
|  |  | 
|  | Index lhs_vert = base_m+threadIdx.x*4; | 
|  |  | 
|  | for (Index k = 0; k < k_size; k += 16) { | 
|  |  | 
|  | lhs_pf0 = internal::pset1<float4>(0); | 
|  | rhs_pf0 = internal::pset1<float4>(0); | 
|  |  | 
|  | Index lhs_horiz = threadIdx.y+k; | 
|  | prefetch_lhs(lhs_pf0, lhs_vert, lhs_horiz) | 
|  |  | 
|  | Index rhs_vert = k+(threadIdx.x%4)*4; | 
|  | Index rhs_horiz0 = (threadIdx.x>>2)+threadIdx.y*4+base_n; | 
|  |  | 
|  | if (!CHECK_RHS_BOUNDARY) { | 
|  | if ((rhs_vert + 3) < k_size) { | 
|  | // just CHECK_RHS_BOUNDARY | 
|  | rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); | 
|  | } else if (rhs_vert + 2 < k_size) { | 
|  | // just CHECK_RHS_BOUNDARY | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); | 
|  | } else if (rhs_vert + 1 < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | } else if (rhs_vert  < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | } | 
|  | } else { | 
|  | if (rhs_horiz0 < n_size) { | 
|  | if ((rhs_vert + 3) < k_size) { | 
|  | rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); | 
|  | } else if ((rhs_vert + 2) < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); | 
|  | } else if ((rhs_vert + 1) < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | } else if (rhs_vert  < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | } | 
|  | } | 
|  | } | 
|  | float x1, x2 ; | 
|  | // the following can be a bitwise operation..... some day. | 
|  | if((threadIdx.x%8) < 4) { | 
|  | x1 = rhs_pf0.y; | 
|  | x2 = rhs_pf0.w; | 
|  | } else { | 
|  | x1 = rhs_pf0.x; | 
|  | x2 = rhs_pf0.z; | 
|  | } | 
|  | #if defined(EIGEN_HIPCC) || (defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000) | 
|  | x1 = __shfl_xor(x1, 4); | 
|  | x2 = __shfl_xor(x2, 4); | 
|  | #else | 
|  | x1 = __shfl_xor_sync(0xFFFFFFFF, x1, 4); | 
|  | x2 = __shfl_xor_sync(0xFFFFFFFF, x2, 4); | 
|  | #endif | 
|  | if((threadIdx.x%8) < 4) { | 
|  | rhs_pf0.y = x1; | 
|  | rhs_pf0.w = x2; | 
|  | } else { | 
|  | rhs_pf0.x = x1; | 
|  | rhs_pf0.z = x2; | 
|  | } | 
|  |  | 
|  | // We have 64 features. | 
|  | // Row 0 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 0, 1. | 
|  | // Row 1 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 2, 3. | 
|  | // ... | 
|  | // Row 31 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 62, 63 | 
|  | // Row 32 -> times (2, 6, 10, 14, 3, 7, 11, 15) for features 0, 1 | 
|  | // ... | 
|  | rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2][threadIdx.x%8] = make_float2(rhs_pf0.x, rhs_pf0.y); | 
|  | rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2+32][threadIdx.x%8] = make_float2(rhs_pf0.z, rhs_pf0.w); | 
|  |  | 
|  | // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), ..  (60, 61) | 
|  | // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), ..  (60, 61) | 
|  | // ... | 
|  | // Row 15 (time 15) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), ..  (60, 61) | 
|  | // Row 16 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), ..  (62, 63) | 
|  | // ... | 
|  |  | 
|  | lhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(lhs_pf0.x, lhs_pf0.y); | 
|  | lhs_shmem2[threadIdx.y+16][threadIdx.x] = make_float2(lhs_pf0.z, lhs_pf0.w); | 
|  |  | 
|  |  | 
|  | #define add_vals(fl1, fl2, fr1, fr2)\ | 
|  | results[0].x += fl1.x * fr1.x;\ | 
|  | results[0].y += fl1.y * fr1.x;\ | 
|  | results[0].z += fl2.x * fr1.x;\ | 
|  | results[0].w += fl2.y * fr1.x;\ | 
|  | \ | 
|  | results[1].x += fl1.x * fr1.y;\ | 
|  | results[1].y += fl1.y * fr1.y;\ | 
|  | results[1].z += fl2.x * fr1.y;\ | 
|  | results[1].w += fl2.y * fr1.y;\ | 
|  | \ | 
|  | results[2].x += fl1.x * fr2.x;\ | 
|  | results[2].y += fl1.y * fr2.x;\ | 
|  | results[2].z += fl2.x * fr2.x;\ | 
|  | results[2].w += fl2.y * fr2.x;\ | 
|  | \ | 
|  | results[3].x += fl1.x * fr2.y;\ | 
|  | results[3].y += fl1.y * fr2.y;\ | 
|  | results[3].z += fl2.x * fr2.y;\ | 
|  | results[3].w += fl2.y * fr2.y;\ | 
|  |  | 
|  | __syncthreads(); | 
|  |  | 
|  | // Do the multiplies. | 
|  | #pragma unroll | 
|  | for (int koff = 0; koff < 16; koff ++) { | 
|  | // 32 x threads. | 
|  | float2 fl1 = lhs_shmem2[koff][threadIdx.x]; | 
|  | float2 fl2 = lhs_shmem2[koff + 16][threadIdx.x]; | 
|  |  | 
|  | int start_feature = threadIdx.y * 4; | 
|  | float2 fr1 = rhs_shmem2[(start_feature>>1) + 32*((koff%4)/2)][koff/4 + (koff%2)*4]; | 
|  | float2 fr2 = rhs_shmem2[(start_feature>>1) + 1 + 32*((koff%4)/2)][koff/4 + (koff%2)*4]; | 
|  |  | 
|  | add_vals(fl1, fl2, fr1, fr2) | 
|  | } | 
|  | __syncthreads(); | 
|  | } | 
|  |  | 
|  | #undef prefetch_lhs | 
|  | #undef add_vals | 
|  |  | 
|  | Index horiz_base = threadIdx.y*4+base_n; | 
|  | if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) { | 
|  | for (int i = 0; i < 4; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | output(lhs_vert + 3, horiz_base + i) = results[i].w; | 
|  | } | 
|  | } else if (!CHECK_RHS_BOUNDARY) { | 
|  | // CHECK LHS | 
|  | if (lhs_vert + 3 < m_size) { | 
|  | for (int i = 0; i < 4; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | output(lhs_vert + 3, horiz_base + i) = results[i].w; | 
|  | } | 
|  | } else if (lhs_vert + 2 < m_size) { | 
|  | for (int i = 0; i < 4; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | } | 
|  | } else if (lhs_vert + 1 < m_size) { | 
|  | for (int i = 0; i < 4; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | } | 
|  | } else if (lhs_vert  < m_size) { | 
|  | for (int i = 0; i < 4; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | } | 
|  | } | 
|  | } else if (!CHECK_LHS_BOUNDARY) { | 
|  | // CHECK RHS | 
|  | /* | 
|  | int ncols_rem = fminf(n_size- horiz_base, 4); | 
|  | for (int i = 0; i < ncols_rem; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | output(lhs_vert + 3, horiz_base + i) = results[i].w; | 
|  | }*/ | 
|  | for (int i = 0; i < 4; i++) { | 
|  | if (horiz_base+i < n_size) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | output(lhs_vert + 3, horiz_base + i) = results[i].w; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // CHECK both boundaries. | 
|  | for (int i = 0; i < 4; i++) { | 
|  | if (horiz_base+i < n_size) { | 
|  | if (lhs_vert < m_size) | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | if (lhs_vert + 1 < m_size) | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | if (lhs_vert + 2 < m_size) | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | if (lhs_vert + 3 < m_size) | 
|  | output(lhs_vert + 3, horiz_base + i) = results[i].w; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Index, typename LhsMapper, | 
|  | typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY, | 
|  | bool CHECK_RHS_BOUNDARY> | 
|  | __device__ EIGEN_STRONG_INLINE void | 
|  | EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs, | 
|  | const OutputMapper output, float2 lhs_shmem2[][32], | 
|  | float2 rhs_shmem2[][8], const Index m_size, | 
|  | const Index n_size, const Index k_size, | 
|  | const Index base_m, const Index base_n) { | 
|  |  | 
|  | // prefetch registers | 
|  | float4 lhs_pf0, lhs_pf1, lhs_pf2, lhs_pf3; | 
|  | float4 rhs_pf0, rhs_pf1; | 
|  |  | 
|  | float4 results[8]; | 
|  | for (int i=0; i < 8; i++) { | 
|  | results[i].x = results[i].y = results[i].z = results[i].w = 0; | 
|  | } | 
|  |  | 
|  | Index lhs_vert = base_m+threadIdx.x*4+(threadIdx.y%4)*32; | 
|  | for (Index k = 0; k < k_size; k += 32) { | 
|  | lhs_pf0 = internal::pset1<float4>(0); | 
|  | lhs_pf1 = internal::pset1<float4>(0); | 
|  | lhs_pf2 = internal::pset1<float4>(0); | 
|  | lhs_pf3 = internal::pset1<float4>(0); | 
|  |  | 
|  | rhs_pf0 = internal::pset1<float4>(0); | 
|  | rhs_pf1 = internal::pset1<float4>(0); | 
|  |  | 
|  | if (!CHECK_LHS_BOUNDARY) { | 
|  | if ((threadIdx.y/4+k+24) < k_size) { | 
|  | lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); | 
|  | lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); | 
|  | lhs_pf3 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+24)); | 
|  | } else if ((threadIdx.y/4+k+16) < k_size) { | 
|  | lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); | 
|  | lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); | 
|  | } else if ((threadIdx.y/4+k+8) < k_size) { | 
|  | lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); | 
|  | lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); | 
|  | } else if ((threadIdx.y/4+k) < k_size) { | 
|  | lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); | 
|  | } | 
|  | } else { | 
|  | // just CHECK_LHS_BOUNDARY | 
|  | if (lhs_vert + 3 < m_size) { | 
|  | if ((threadIdx.y/4+k+24) < k_size) { | 
|  | lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); | 
|  | lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); | 
|  | lhs_pf3 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+24)); | 
|  | } else if ((threadIdx.y/4+k+16) < k_size) { | 
|  | lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); | 
|  | lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); | 
|  | } else if ((threadIdx.y/4+k+8) < k_size) { | 
|  | lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); | 
|  | lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); | 
|  | } else if ((threadIdx.y/4+k) < k_size) { | 
|  | lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); | 
|  | } | 
|  | } else if (lhs_vert + 2 < m_size) { | 
|  | if ((threadIdx.y/4+k+24) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); | 
|  | lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); | 
|  | lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); | 
|  | lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); | 
|  | lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); | 
|  | lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); | 
|  | lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16)); | 
|  | lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24)); | 
|  | lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24)); | 
|  | lhs_pf3.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+24)); | 
|  | } else if ((threadIdx.y/4+k+16) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); | 
|  | lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); | 
|  | lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); | 
|  | lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); | 
|  | lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); | 
|  | lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); | 
|  | lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16)); | 
|  | } else if ((threadIdx.y/4+k+8) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); | 
|  | lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); | 
|  | lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); | 
|  | lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); | 
|  | lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8)); | 
|  | } else if ((threadIdx.y/4+k) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); | 
|  | lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); | 
|  | } | 
|  | } else if (lhs_vert + 1 < m_size) { | 
|  | if ((threadIdx.y/4+k+24) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); | 
|  | lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); | 
|  | lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); | 
|  | lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); | 
|  | lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24)); | 
|  | lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24)); | 
|  | } else if ((threadIdx.y/4+k+16) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); | 
|  | lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); | 
|  | lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); | 
|  | lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); | 
|  | } else if ((threadIdx.y/4+k+8) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); | 
|  | lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); | 
|  | lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); | 
|  | } else if ((threadIdx.y/4+k) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); | 
|  | } | 
|  | } else if (lhs_vert < m_size) { | 
|  | if ((threadIdx.y/4+k+24) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); | 
|  | lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24)); | 
|  | } else if ((threadIdx.y/4+k+16) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); | 
|  | lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); | 
|  | } else if ((threadIdx.y/4+k+8) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); | 
|  | } else if ((threadIdx.y/4+k) < k_size) { | 
|  | lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); | 
|  | } | 
|  | } | 
|  | } | 
|  | __syncthreads(); | 
|  | Index rhs_vert = k+threadIdx.x*4; | 
|  | Index rhs_horiz0 = threadIdx.y*2+base_n; | 
|  | Index rhs_horiz1 = threadIdx.y*2+1+base_n; | 
|  | if (!CHECK_RHS_BOUNDARY) { | 
|  | if ((rhs_vert + 3) < k_size) { | 
|  | // just CHECK_RHS_BOUNDARY | 
|  | rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); | 
|  | rhs_pf1 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz1); | 
|  | } else if (rhs_vert + 2 < k_size) { | 
|  | // just CHECK_RHS_BOUNDARY | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); | 
|  | rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); | 
|  | rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); | 
|  | rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1); | 
|  | } else if (rhs_vert + 1 < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); | 
|  | rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); | 
|  | } else if (rhs_vert  < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); | 
|  | } | 
|  | } else { | 
|  | if (rhs_horiz1 < n_size) { | 
|  | if ((rhs_vert + 3) < k_size) { | 
|  | // just CHECK_RHS_BOUNDARY | 
|  | rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); | 
|  | rhs_pf1 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz1); | 
|  | } else if (rhs_vert + 2 < k_size) { | 
|  | // just CHECK_RHS_BOUNDARY | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); | 
|  | rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); | 
|  | rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); | 
|  | rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1); | 
|  | } else if (k+threadIdx.x*4 + 1 < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); | 
|  | rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); | 
|  | } else if (k+threadIdx.x*4  < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); | 
|  | } | 
|  | } else if (rhs_horiz0 < n_size) { | 
|  | if ((rhs_vert + 3) < k_size) { | 
|  | // just CHECK_RHS_BOUNDARY | 
|  | rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); | 
|  | } else if ((rhs_vert + 2) < k_size) { | 
|  | // just CHECK_RHS_BOUNDARY | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); | 
|  | } else if ((rhs_vert + 1) < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); | 
|  | } else if (rhs_vert  < k_size) { | 
|  | rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); | 
|  | } | 
|  | } | 
|  | } | 
|  | __syncthreads(); | 
|  | // Loaded. Do computation | 
|  | // Row 0 -> times (0, 4, 8, .. 28) for features 0, 1. | 
|  | // Row 1 -> times (0, 4, 8, .. 28) for features 2, 3. | 
|  | // .. | 
|  | // Row 31 -> times (0, 4, 8, .. 28) for features 62, 63 | 
|  | rhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(rhs_pf0.x, rhs_pf1.x); | 
|  | // Row 32 -> times (1, 5, 9, .. 29) for features 0, 1. | 
|  | // Row 33 -> times (1, 5, 9, .. 29) for features 2, 3. | 
|  | // .. | 
|  | rhs_shmem2[threadIdx.y+32][threadIdx.x] = make_float2(rhs_pf0.y, rhs_pf1.y); | 
|  | // Row 64 -> times (2, 6, 10, .. 30) for features 0, 1. | 
|  | // Row 65 -> times (2, 6, 10, .. 30) for features 2, 3. | 
|  | rhs_shmem2[threadIdx.y+64][threadIdx.x] = make_float2(rhs_pf0.z, rhs_pf1.z); | 
|  | // Row 96 -> times (3, 7, 11, .. 31) for features 0, 1. | 
|  | // Row 97 -> times (3, 7, 11, .. 31) for features 2, 3. | 
|  | rhs_shmem2[threadIdx.y+96][threadIdx.x] = make_float2(rhs_pf0.w, rhs_pf1.w); | 
|  |  | 
|  | // LHS. | 
|  | // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), ..  (60, 61) .. (124, 125) | 
|  | // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), ..  (60, 61) .. (124, 125) | 
|  | // ... | 
|  | // Row 8 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), ..  (62, 63) .. (126, 127) | 
|  | // Row 15 (time 7) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), ..  (62, 63) .. (126, 127) | 
|  |  | 
|  |  | 
|  | #define add_vals(a_feat1, a_feat2, f1, f2, f3, f4)\ | 
|  | results[0].x += a_feat1.x * f1.x;\ | 
|  | results[1].x += a_feat1.x * f1.y;\ | 
|  | results[2].x += a_feat1.x * f2.x;\ | 
|  | results[3].x += a_feat1.x * f2.y;\ | 
|  | results[4].x += a_feat1.x * f3.x;\ | 
|  | results[5].x += a_feat1.x * f3.y;\ | 
|  | results[6].x += a_feat1.x * f4.x;\ | 
|  | results[7].x += a_feat1.x * f4.y;\ | 
|  | \ | 
|  | results[0].y += a_feat1.y * f1.x;\ | 
|  | results[1].y += a_feat1.y * f1.y;\ | 
|  | results[2].y += a_feat1.y * f2.x;\ | 
|  | results[3].y += a_feat1.y * f2.y;\ | 
|  | results[4].y += a_feat1.y * f3.x;\ | 
|  | results[5].y += a_feat1.y * f3.y;\ | 
|  | results[6].y += a_feat1.y * f4.x;\ | 
|  | results[7].y += a_feat1.y * f4.y;\ | 
|  | \ | 
|  | results[0].z += a_feat2.x * f1.x;\ | 
|  | results[1].z += a_feat2.x * f1.y;\ | 
|  | results[2].z += a_feat2.x * f2.x;\ | 
|  | results[3].z += a_feat2.x * f2.y;\ | 
|  | results[4].z += a_feat2.x * f3.x;\ | 
|  | results[5].z += a_feat2.x * f3.y;\ | 
|  | results[6].z += a_feat2.x * f4.x;\ | 
|  | results[7].z += a_feat2.x * f4.y;\ | 
|  | \ | 
|  | results[0].w += a_feat2.y * f1.x;\ | 
|  | results[1].w += a_feat2.y * f1.y;\ | 
|  | results[2].w += a_feat2.y * f2.x;\ | 
|  | results[3].w += a_feat2.y * f2.y;\ | 
|  | results[4].w += a_feat2.y * f3.x;\ | 
|  | results[5].w += a_feat2.y * f3.y;\ | 
|  | results[6].w += a_feat2.y * f4.x;\ | 
|  | results[7].w += a_feat2.y * f4.y;\ | 
|  |  | 
|  | lhs_shmem2[threadIdx.y/4][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.x, lhs_pf0.y); | 
|  | lhs_shmem2[threadIdx.y/4+8][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.x, lhs_pf1.y); | 
|  | lhs_shmem2[threadIdx.y/4+16][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.x, lhs_pf2.y); | 
|  | lhs_shmem2[threadIdx.y/4+24][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.x, lhs_pf3.y); | 
|  |  | 
|  | lhs_shmem2[threadIdx.y/4 + 32][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.z, lhs_pf0.w); | 
|  | lhs_shmem2[threadIdx.y/4 + 40][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.z, lhs_pf1.w); | 
|  | lhs_shmem2[threadIdx.y/4 + 48][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.z, lhs_pf2.w); | 
|  | lhs_shmem2[threadIdx.y/4 + 56][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.z, lhs_pf3.w); | 
|  |  | 
|  | __syncthreads(); | 
|  |  | 
|  | // Do the multiplies. | 
|  | #pragma unroll | 
|  | for (int koff = 0; koff < 32; koff ++) { | 
|  | float2 a3 = lhs_shmem2[koff][threadIdx.x + (threadIdx.y % 4) * 8]; | 
|  | float2 a4 = lhs_shmem2[koff + 32][threadIdx.x + (threadIdx.y % 4) * 8]; | 
|  |  | 
|  | // first feature is at (threadIdx.y/4) * 8 last is at start + 8. | 
|  | int start_feature = (threadIdx.y / 4) * 8; | 
|  |  | 
|  | float2 br1 = rhs_shmem2[start_feature/2 +     (koff % 4) * 32][koff/4]; | 
|  | float2 br2 = rhs_shmem2[start_feature/2 + 1 + (koff % 4) * 32][koff/4]; | 
|  | float2 br3 = rhs_shmem2[start_feature/2 + 2 + (koff % 4) * 32][koff/4]; | 
|  | float2 br4 = rhs_shmem2[start_feature/2 + 3 + (koff % 4) * 32][koff/4]; | 
|  |  | 
|  | add_vals(a3, a4, br1, br2, br3, br4) | 
|  | } | 
|  | __syncthreads(); | 
|  | } // end loop over k | 
|  |  | 
|  | __syncthreads(); | 
|  | Index horiz_base = (threadIdx.y/4)*8+base_n; | 
|  | if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) { | 
|  | for (int i = 0; i < 8; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | output(lhs_vert + 3, horiz_base + i) = results[i].w; | 
|  | } | 
|  | } else if (!CHECK_RHS_BOUNDARY) { | 
|  | if (lhs_vert + 3 < m_size) { | 
|  | for (int i = 0; i < 8; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | output(lhs_vert + 3, horiz_base + i) = results[i].w; | 
|  | } | 
|  | } else if (lhs_vert + 2 < m_size) { | 
|  | for (int i = 0; i < 8; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | } | 
|  | } else if (lhs_vert + 1 < m_size) { | 
|  | for (int i = 0; i < 8; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | } | 
|  | } else if (lhs_vert  < m_size) { | 
|  | for (int i = 0; i < 8; i++) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | } | 
|  | } | 
|  | } else if (!CHECK_LHS_BOUNDARY) { | 
|  | // CHECK BOUNDARY_B | 
|  | for (int i = 0; i < 8; i++) { | 
|  | if (horiz_base + i < n_size) { | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | output(lhs_vert + 3, horiz_base + i) = results[i].w; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // CHECK both boundaries. | 
|  | for (int i = 0; i < 8; i++) { | 
|  | if (horiz_base + i < n_size) { | 
|  | if (lhs_vert < m_size) | 
|  | output(lhs_vert, horiz_base + i) = results[i].x; | 
|  | if (lhs_vert + 1 < m_size) | 
|  | output(lhs_vert + 1, horiz_base + i) = results[i].y; | 
|  | if (lhs_vert + 2 < m_size) | 
|  | output(lhs_vert + 2, horiz_base + i) = results[i].z; | 
|  | if (lhs_vert + 3 < m_size) | 
|  | output(lhs_vert + 3, horiz_base + i) = results[i].w; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Index, typename LhsMapper, | 
|  | typename RhsMapper, typename OutputMapper> | 
|  | __global__ void | 
|  | #if defined(EIGEN_HIPCC) | 
|  | __launch_bounds__(256, 1) | 
|  | #else | 
|  | __launch_bounds__(256) | 
|  | #endif | 
|  | EigenFloatContractionKernel(const LhsMapper lhs, const RhsMapper rhs, | 
|  | const OutputMapper output, | 
|  | const Index m_size, const Index n_size, const Index k_size) { | 
|  | __shared__ float2 lhs_shmem[64*32]; | 
|  | __shared__ float2 rhs_shmem[128*8]; | 
|  |  | 
|  | typedef float2 LHS_MEM[64][32]; | 
|  | typedef float2 RHS_MEM[128][8]; | 
|  |  | 
|  | const Index m_block_idx = blockIdx.x; | 
|  | const Index n_block_idx = blockIdx.y; | 
|  |  | 
|  | const Index base_m = 128 * m_block_idx; | 
|  | const Index base_n = 64 * n_block_idx; | 
|  |  | 
|  | bool check_rhs = (base_n + 63) >= n_size; | 
|  | bool check_lhs128 = (base_m + 127) >= m_size; | 
|  |  | 
|  | if (!check_rhs) { | 
|  | if (!check_lhs128) { | 
|  | // >= 128 rows left | 
|  | EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, false>( | 
|  | lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); | 
|  | } else { | 
|  | EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, false>( | 
|  | lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); | 
|  | } | 
|  | } else { | 
|  | if (!check_lhs128) { | 
|  | // >= 128 rows left | 
|  | EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, true>( | 
|  | lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); | 
|  | } else { | 
|  | EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, true>( | 
|  | lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Index, typename LhsMapper, | 
|  | typename RhsMapper, typename OutputMapper> | 
|  | __global__ void | 
|  | #if defined(EIGEN_HIPCC) | 
|  | __launch_bounds__(256, 1) | 
|  | #else | 
|  | __launch_bounds__(256) | 
|  | #endif | 
|  | EigenFloatContractionKernel16x16(const LhsMapper lhs, const RhsMapper rhs, | 
|  | const OutputMapper output, | 
|  | const Index m_size, const Index n_size, const Index k_size) { | 
|  | __shared__ float2 lhs_shmem[32][16]; | 
|  | __shared__ float2 rhs_shmem[64][8]; | 
|  |  | 
|  | const Index m_block_idx = blockIdx.x; | 
|  | const Index n_block_idx = blockIdx.y; | 
|  |  | 
|  | const Index base_m = 64 * m_block_idx; | 
|  | const Index base_n = 64 * n_block_idx; | 
|  |  | 
|  | if (base_m + 63 < m_size) { | 
|  | if (base_n + 63 < n_size) { | 
|  | EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); | 
|  | } else { | 
|  | EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); | 
|  | } | 
|  | } else { | 
|  | if (base_n + 63 < n_size) { | 
|  | EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); | 
|  | } else { | 
|  | EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType> | 
|  | struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, GpuDevice> : | 
|  | public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, GpuDevice> > { | 
|  |  | 
|  | typedef GpuDevice Device; | 
|  |  | 
|  | typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self; | 
|  | typedef TensorContractionEvaluatorBase<Self> Base; | 
|  |  | 
|  | typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType; | 
|  | typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; | 
|  | typedef typename XprType::Index Index; | 
|  | typedef typename XprType::CoeffReturnType CoeffReturnType; | 
|  | typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType; | 
|  |  | 
|  | enum { | 
|  | Layout = TensorEvaluator<LeftArgType, Device>::Layout, | 
|  | }; | 
|  |  | 
|  | // Most of the code is assuming that both input tensors are ColMajor. If the | 
|  | // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: | 
|  | // If we want to compute A * B = C, where A is LHS and B is RHS, the code | 
|  | // will pretend B is LHS and A is RHS. | 
|  | typedef typename internal::conditional< | 
|  | static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; | 
|  | typedef typename internal::conditional< | 
|  | static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; | 
|  |  | 
|  | static const int LDims = | 
|  | internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; | 
|  | static const int RDims = | 
|  | internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; | 
|  | static const int ContractDims = internal::array_size<Indices>::value; | 
|  |  | 
|  | typedef array<Index, LDims> left_dim_mapper_t; | 
|  | typedef array<Index, RDims> right_dim_mapper_t; | 
|  |  | 
|  | typedef array<Index, ContractDims> contract_t; | 
|  | typedef array<Index, LDims - ContractDims> left_nocontract_t; | 
|  | typedef array<Index, RDims - ContractDims> right_nocontract_t; | 
|  |  | 
|  | static const int NumDims = LDims + RDims - 2 * ContractDims; | 
|  |  | 
|  | typedef DSizes<Index, NumDims> Dimensions; | 
|  |  | 
|  | // typedefs needed in evalTo | 
|  | typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; | 
|  | typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; | 
|  |  | 
|  | typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; | 
|  | typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; | 
|  |  | 
|  | typedef typename LeftEvaluator::Dimensions LeftDimensions; | 
|  | typedef typename RightEvaluator::Dimensions RightDimensions; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : | 
|  | Base(op, device) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT( (internal::is_same<OutputKernelType, const NoOpOutputKernel>::value), | 
|  | GPU_TENSOR_CONTRACTION_DOES_NOT_SUPPORT_OUTPUT_KERNELS); | 
|  | } | 
|  |  | 
|  | // We need to redefine this method to make nvcc happy | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { | 
|  | this->m_leftImpl.evalSubExprsIfNeeded(NULL); | 
|  | this->m_rightImpl.evalSubExprsIfNeeded(NULL); | 
|  | if (data) { | 
|  | evalTo(data); | 
|  | return false; | 
|  | } else { | 
|  | this->m_result = static_cast<Scalar *>(this->m_device.allocate(this->dimensions().TotalSize() * sizeof(Scalar))); | 
|  | evalTo(this->m_result); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void evalTo(Scalar* buffer) const { | 
|  | if (this->m_lhs_inner_dim_contiguous) { | 
|  | if (this->m_rhs_inner_dim_contiguous) { | 
|  | if (this->m_rhs_inner_dim_reordered) { | 
|  | evalTyped<true, true, true, Unaligned>(buffer); | 
|  | } | 
|  | else { | 
|  | evalTyped<true, true, false, Unaligned>(buffer); | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (this->m_rhs_inner_dim_reordered) { | 
|  | evalTyped<true, false, true, Unaligned>(buffer); | 
|  | } | 
|  | else { | 
|  | evalTyped<true, false, false, Unaligned>(buffer); | 
|  | } | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (this->m_rhs_inner_dim_contiguous) { | 
|  | if (this->m_rhs_inner_dim_reordered) { | 
|  | evalTyped<false, true, true, Unaligned>(buffer); | 
|  | } | 
|  | else { | 
|  | evalTyped<false, true, false, Unaligned>(buffer); | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (this->m_rhs_inner_dim_reordered) { | 
|  | evalTyped<false, false, true, Unaligned>(buffer); | 
|  | } | 
|  | else { | 
|  | evalTyped<false, false, false, Unaligned>(buffer); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename LhsScalar, typename RhsScalar, typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels { | 
|  | static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) { | 
|  | const Index m_blocks = (m + 63) / 64; | 
|  | const Index n_blocks = (n + 63) / 64; | 
|  | const dim3 num_blocks(m_blocks, n_blocks, 1); | 
|  | const dim3 block_size(8, 8, 8); | 
|  | LAUNCH_GPU_KERNEL((EigenContractionKernel<Scalar, Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels<float, float, Index, LhsMapper, RhsMapper, OutputMapper> { | 
|  | static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) { | 
|  | if (m < 768 || n < 768) { | 
|  | const Index m_blocks = (m + 63) / 64; | 
|  | const Index n_blocks = (n + 63) / 64; | 
|  | const dim3 num_blocks(m_blocks, n_blocks, 1); | 
|  | const dim3 block_size(16, 16, 1); | 
|  | LAUNCH_GPU_KERNEL((EigenFloatContractionKernel16x16<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k); | 
|  | } else { | 
|  | const Index m_blocks = (m + 127) / 128; | 
|  | const Index n_blocks = (n + 63) / 64; | 
|  | const dim3 num_blocks(m_blocks, n_blocks, 1); | 
|  | const dim3 block_size(8, 32, 1); | 
|  | LAUNCH_GPU_KERNEL((EigenFloatContractionKernel<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> | 
|  | void evalTyped(Scalar* buffer) const { | 
|  | // columns in left side, rows in right side | 
|  | const Index k = this->m_k_size; | 
|  | EIGEN_UNUSED_VARIABLE(k) | 
|  |  | 
|  | // rows in left side | 
|  | const Index m = this->m_i_size; | 
|  |  | 
|  | // columns in right side | 
|  | const Index n = this->m_j_size; | 
|  |  | 
|  | // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar) | 
|  | this->m_device.memset(buffer, 0, m * n * sizeof(Scalar)); | 
|  |  | 
|  | typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, | 
|  | LeftEvaluator, left_nocontract_t, | 
|  | contract_t, 4, | 
|  | lhs_inner_dim_contiguous, | 
|  | false, Unaligned> LhsMapper; | 
|  |  | 
|  | typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, | 
|  | RightEvaluator, right_nocontract_t, | 
|  | contract_t, 4, | 
|  | rhs_inner_dim_contiguous, | 
|  | rhs_inner_dim_reordered, Unaligned> RhsMapper; | 
|  |  | 
|  | typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; | 
|  |  | 
|  |  | 
|  | // initialize data mappers | 
|  | LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, | 
|  | this->m_left_contracting_strides, this->m_k_strides); | 
|  |  | 
|  | RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides, | 
|  | this->m_right_contracting_strides, this->m_k_strides); | 
|  |  | 
|  | OutputMapper output(buffer, m); | 
|  |  | 
|  | #if defined(EIGEN_USE_HIP) | 
|  | setGpuSharedMemConfig(hipSharedMemBankSizeEightByte); | 
|  | #else | 
|  | setGpuSharedMemConfig(cudaSharedMemBankSizeEightByte); | 
|  | #endif | 
|  |  | 
|  | LaunchKernels<LhsScalar, RhsScalar, Index, LhsMapper, RhsMapper, OutputMapper>::Run(lhs, rhs, output,  m, n, k, this->m_device); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_USE_GPU and EIGEN_GPUCC | 
|  | #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_GPU_H |