|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H | 
|  | #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \class TensorDevice | 
|  | * \ingroup CXX11_Tensor_Module | 
|  | * | 
|  | * \brief Pseudo expression providing an operator = that will evaluate its argument | 
|  | * on the specified computing 'device' (GPU, thread pool, ...) | 
|  | * | 
|  | * Example: | 
|  | *    C.device(EIGEN_GPU) = A + B; | 
|  | * | 
|  | * Todo: operator *= and /=. | 
|  | */ | 
|  |  | 
|  | template <typename ExpressionType, typename DeviceType> class TensorDevice { | 
|  | public: | 
|  | TensorDevice(const DeviceType& device, ExpressionType& expression) : m_device(device), m_expression(expression) {} | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | EIGEN_STRONG_INLINE TensorDevice& operator=(const OtherDerived& other) { | 
|  | typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; | 
|  | Assign assign(m_expression, other); | 
|  | internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | EIGEN_STRONG_INLINE TensorDevice& operator+=(const OtherDerived& other) { | 
|  | typedef typename OtherDerived::Scalar Scalar; | 
|  | typedef TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ExpressionType, const OtherDerived> Sum; | 
|  | Sum sum(m_expression, other); | 
|  | typedef TensorAssignOp<ExpressionType, const Sum> Assign; | 
|  | Assign assign(m_expression, sum); | 
|  | internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | EIGEN_STRONG_INLINE TensorDevice& operator-=(const OtherDerived& other) { | 
|  | typedef typename OtherDerived::Scalar Scalar; | 
|  | typedef TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const ExpressionType, const OtherDerived> Difference; | 
|  | Difference difference(m_expression, other); | 
|  | typedef TensorAssignOp<ExpressionType, const Difference> Assign; | 
|  | Assign assign(m_expression, difference); | 
|  | internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | const DeviceType& m_device; | 
|  | ExpressionType& m_expression; | 
|  | }; | 
|  |  | 
|  | /** \class TensorAsyncDevice | 
|  | * \ingroup CXX11_Tensor_Module | 
|  | * | 
|  | * \brief Pseudo expression providing an operator = that will evaluate its | 
|  | * argument asynchronously on the specified device. Currently only | 
|  | * ThreadPoolDevice implements proper asynchronous execution, while the default | 
|  | * and GPU devices just run the expression synchronously and call m_done() on | 
|  | * completion.. | 
|  | * | 
|  | * Example: | 
|  | *    auto done = []() { ... expression evaluation done ... }; | 
|  | *    C.device(thread_pool_device, std::move(done)) = A + B; | 
|  | */ | 
|  |  | 
|  | template <typename ExpressionType, typename DeviceType, typename DoneCallback> | 
|  | class TensorAsyncDevice { | 
|  | public: | 
|  | TensorAsyncDevice(const DeviceType& device, ExpressionType& expression, | 
|  | DoneCallback done) | 
|  | : m_device(device), m_expression(expression), m_done(std::move(done)) {} | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_STRONG_INLINE TensorAsyncDevice& operator=(const OtherDerived& other) { | 
|  | typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; | 
|  | typedef internal::TensorExecutor<const Assign, DeviceType> Executor; | 
|  |  | 
|  | Assign assign(m_expression, other); | 
|  | Executor::run(assign, m_device); | 
|  | m_done(); | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | const DeviceType& m_device; | 
|  | ExpressionType& m_expression; | 
|  | DoneCallback m_done; | 
|  | }; | 
|  |  | 
|  |  | 
|  | #ifdef EIGEN_USE_THREADS | 
|  | template <typename ExpressionType, typename DoneCallback> | 
|  | class TensorAsyncDevice<ExpressionType, ThreadPoolDevice, DoneCallback> { | 
|  | public: | 
|  | TensorAsyncDevice(const ThreadPoolDevice& device, ExpressionType& expression, | 
|  | DoneCallback done) | 
|  | : m_device(device), m_expression(expression), m_done(std::move(done)) {} | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_STRONG_INLINE TensorAsyncDevice& operator=(const OtherDerived& other) { | 
|  | typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; | 
|  | typedef internal::TensorAsyncExecutor<const Assign, ThreadPoolDevice, DoneCallback> Executor; | 
|  |  | 
|  | // WARNING: After assignment 'm_done' callback will be in undefined state. | 
|  | Assign assign(m_expression, other); | 
|  | Executor::runAsync(assign, m_device, std::move(m_done)); | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | const ThreadPoolDevice& m_device; | 
|  | ExpressionType& m_expression; | 
|  | DoneCallback m_done; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H |