|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H | 
|  | #define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \class TensorPadding | 
|  | * \ingroup CXX11_Tensor_Module | 
|  | * | 
|  | * \brief Tensor padding class. | 
|  | * At the moment only padding with a constant value is supported. | 
|  | * | 
|  | */ | 
|  | namespace internal { | 
|  | template<typename PaddingDimensions, typename XprType> | 
|  | struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType> | 
|  | { | 
|  | typedef typename XprType::Scalar Scalar; | 
|  | typedef traits<XprType> XprTraits; | 
|  | typedef typename XprTraits::StorageKind StorageKind; | 
|  | typedef typename XprTraits::Index Index; | 
|  | typedef typename XprType::Nested Nested; | 
|  | typedef typename remove_reference<Nested>::type _Nested; | 
|  | static const int NumDimensions = XprTraits::NumDimensions; | 
|  | static const int Layout = XprTraits::Layout; | 
|  | typedef typename XprTraits::PointerType PointerType; | 
|  | }; | 
|  |  | 
|  | template<typename PaddingDimensions, typename XprType> | 
|  | struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense> | 
|  | { | 
|  | typedef const TensorPaddingOp<PaddingDimensions, XprType>& type; | 
|  | }; | 
|  |  | 
|  | template<typename PaddingDimensions, typename XprType> | 
|  | struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type> | 
|  | { | 
|  | typedef TensorPaddingOp<PaddingDimensions, XprType> type; | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  |  | 
|  |  | 
|  | template<typename PaddingDimensions, typename XprType> | 
|  | class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors> | 
|  | { | 
|  | public: | 
|  | typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar; | 
|  | typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; | 
|  | typedef typename XprType::CoeffReturnType CoeffReturnType; | 
|  | typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested; | 
|  | typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind; | 
|  | typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims, const Scalar padding_value) | 
|  | : m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {} | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | const PaddingDimensions& padding() const { return m_padding_dims; } | 
|  | EIGEN_DEVICE_FUNC | 
|  | Scalar padding_value() const { return m_padding_value; } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | const typename internal::remove_all<typename XprType::Nested>::type& | 
|  | expression() const { return m_xpr; } | 
|  |  | 
|  | protected: | 
|  | typename XprType::Nested m_xpr; | 
|  | const PaddingDimensions m_padding_dims; | 
|  | const Scalar m_padding_value; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // Eval as rvalue | 
|  | template<typename PaddingDimensions, typename ArgType, typename Device> | 
|  | struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device> | 
|  | { | 
|  | typedef TensorPaddingOp<PaddingDimensions, ArgType> XprType; | 
|  | typedef typename XprType::Index Index; | 
|  | static const int NumDims = internal::array_size<PaddingDimensions>::value; | 
|  | typedef DSizes<Index, NumDims> Dimensions; | 
|  | typedef typename XprType::Scalar Scalar; | 
|  | typedef typename XprType::CoeffReturnType CoeffReturnType; | 
|  | typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; | 
|  | static const int PacketSize = PacketType<CoeffReturnType, Device>::size; | 
|  | typedef StorageMemory<CoeffReturnType, Device> Storage; | 
|  | typedef typename Storage::Type EvaluatorPointerType; | 
|  |  | 
|  | enum { | 
|  | IsAligned         = true, | 
|  | PacketAccess      = TensorEvaluator<ArgType, Device>::PacketAccess, | 
|  | BlockAccessV2     = TensorEvaluator<ArgType, Device>::RawAccess, | 
|  | PreferBlockAccess = true, | 
|  | Layout            = TensorEvaluator<ArgType, Device>::Layout, | 
|  | CoordAccess       = true, | 
|  | RawAccess         = false | 
|  | }; | 
|  |  | 
|  | typedef typename internal::remove_const<Scalar>::type ScalarNoConst; | 
|  |  | 
|  | //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// | 
|  | typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; | 
|  | typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; | 
|  |  | 
|  | typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims, | 
|  | Layout, Index> | 
|  | TensorBlockV2; | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) | 
|  | : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value()), m_device(device) | 
|  | { | 
|  | // The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead | 
|  | // to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector | 
|  | // of 1 element first and then pad. | 
|  | EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); | 
|  |  | 
|  | // Compute dimensions | 
|  | m_dimensions = m_impl.dimensions(); | 
|  | for (int i = 0; i < NumDims; ++i) { | 
|  | m_dimensions[i] += m_padding[i].first + m_padding[i].second; | 
|  | } | 
|  | const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); | 
|  | if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { | 
|  | m_inputStrides[0] = 1; | 
|  | m_outputStrides[0] = 1; | 
|  | for (int i = 1; i < NumDims; ++i) { | 
|  | m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; | 
|  | m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; | 
|  | } | 
|  | m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1]; | 
|  | } else { | 
|  | m_inputStrides[NumDims - 1] = 1; | 
|  | m_outputStrides[NumDims] = 1; | 
|  | for (int i = NumDims - 2; i >= 0; --i) { | 
|  | m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; | 
|  | m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1]; | 
|  | } | 
|  | m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { | 
|  | m_impl.evalSubExprsIfNeeded(NULL); | 
|  | return true; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { | 
|  | m_impl.cleanup(); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const | 
|  | { | 
|  | eigen_assert(index < dimensions().TotalSize()); | 
|  | Index inputIndex = 0; | 
|  | if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { | 
|  | EIGEN_UNROLL_LOOP | 
|  | for (int i = NumDims - 1; i > 0; --i) { | 
|  | const Index idx = index / m_outputStrides[i]; | 
|  | if (isPaddingAtIndexForDim(idx, i)) { | 
|  | return m_paddingValue; | 
|  | } | 
|  | inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; | 
|  | index -= idx * m_outputStrides[i]; | 
|  | } | 
|  | if (isPaddingAtIndexForDim(index, 0)) { | 
|  | return m_paddingValue; | 
|  | } | 
|  | inputIndex += (index - m_padding[0].first); | 
|  | } else { | 
|  | EIGEN_UNROLL_LOOP | 
|  | for (int i = 0; i < NumDims - 1; ++i) { | 
|  | const Index idx = index / m_outputStrides[i+1]; | 
|  | if (isPaddingAtIndexForDim(idx, i)) { | 
|  | return m_paddingValue; | 
|  | } | 
|  | inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; | 
|  | index -= idx * m_outputStrides[i+1]; | 
|  | } | 
|  | if (isPaddingAtIndexForDim(index, NumDims-1)) { | 
|  | return m_paddingValue; | 
|  | } | 
|  | inputIndex += (index - m_padding[NumDims-1].first); | 
|  | } | 
|  | return m_impl.coeff(inputIndex); | 
|  | } | 
|  |  | 
|  | template<int LoadMode> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const | 
|  | { | 
|  | if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { | 
|  | return packetColMajor(index); | 
|  | } | 
|  | return packetRowMajor(index); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { | 
|  | TensorOpCost cost = m_impl.costPerCoeff(vectorized); | 
|  | if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { | 
|  | EIGEN_UNROLL_LOOP | 
|  | for (int i = 0; i < NumDims; ++i) | 
|  | updateCostPerDimension(cost, i, i == 0); | 
|  | } else { | 
|  | EIGEN_UNROLL_LOOP | 
|  | for (int i = NumDims - 1; i >= 0; --i) | 
|  | updateCostPerDimension(cost, i, i == NumDims - 1); | 
|  | } | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements( | 
|  | std::vector<internal::TensorOpResourceRequirements>* resources) const { | 
|  | Eigen::Index block_total_size_max = numext::maxi<Eigen::Index>( | 
|  | 1, m_device.lastLevelCacheSize() / sizeof(Scalar)); | 
|  | resources->push_back(internal::TensorOpResourceRequirements( | 
|  | internal::kSkewedInnerDims, block_total_size_max)); | 
|  |  | 
|  | m_impl.getResourceRequirements(resources); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlockV2 | 
|  | blockV2(TensorBlockDesc& desc, TensorBlockScratch& scratch, | 
|  | bool /*root_of_expr_ast*/ = false) const { | 
|  | // If one of the dimensions is zero, return empty block view. | 
|  | if (desc.size() == 0) { | 
|  | return TensorBlockV2(internal::TensorBlockKind::kView, NULL, | 
|  | desc.dimensions()); | 
|  | } | 
|  |  | 
|  | static const bool IsColMajor = Layout == static_cast<int>(ColMajor); | 
|  |  | 
|  | Index offset = desc.offset(); | 
|  |  | 
|  | // Compute offsets in the output tensor corresponding to the desc.offset(). | 
|  | DSizes<Index, NumDims> output_offsets; | 
|  | for (int i = NumDims - 1; i > 0; --i) { | 
|  | const int dim = IsColMajor ? i : NumDims - i - 1; | 
|  | const int stride_dim = IsColMajor ? dim : dim + 1; | 
|  | output_offsets[dim] = offset / m_outputStrides[stride_dim]; | 
|  | offset -= output_offsets[dim] * m_outputStrides[stride_dim]; | 
|  | } | 
|  | output_offsets[IsColMajor ? 0 : NumDims - 1] = offset; | 
|  |  | 
|  | // Offsets in the input corresponding to output offsets. | 
|  | DSizes<Index, NumDims> input_offsets = output_offsets; | 
|  | for (int i = 0; i < NumDims; ++i) { | 
|  | const int dim = IsColMajor ? i : NumDims - i - 1; | 
|  | input_offsets[dim] = input_offsets[dim] - m_padding[dim].first; | 
|  | } | 
|  |  | 
|  | // Compute offset in the input buffer (at this point it might be illegal and | 
|  | // point outside of the input buffer, because we don't check for negative | 
|  | // offsets, it will be autocorrected in the block iteration loop below). | 
|  | Index input_offset = 0; | 
|  | for (int i = 0; i < NumDims; ++i) { | 
|  | const int dim = IsColMajor ? i : NumDims - i - 1; | 
|  | input_offset += input_offsets[dim] * m_inputStrides[dim]; | 
|  | } | 
|  |  | 
|  | // Destination buffer and scratch buffer both indexed from 0 and have the | 
|  | // same dimensions as the requested block (for destination buffer this | 
|  | // property is guaranteed by `desc.destination()`). | 
|  | Index output_offset = 0; | 
|  | const DSizes<Index, NumDims> output_strides = | 
|  | internal::strides<Layout>(desc.dimensions()); | 
|  |  | 
|  | // NOTE(ezhulenev): We initialize bock iteration state for `NumDims - 1` | 
|  | // dimensions, skipping innermost dimension. In theory it should be possible | 
|  | // to squeeze matching innermost dimensions, however in practice that did | 
|  | // not show any improvements in benchmarks. Also in practice first outer | 
|  | // dimension usually has padding, and will prevent squeezing. | 
|  |  | 
|  | // Initialize output block iterator state. Dimension in this array are | 
|  | // always in inner_most -> outer_most order (col major layout). | 
|  | array<BlockIteratorState, NumDims - 1> it; | 
|  | for (int i = 0; i < NumDims - 1; ++i) { | 
|  | const int dim = IsColMajor ? i + 1 : NumDims - i - 2; | 
|  | it[i].count = 0; | 
|  | it[i].size = desc.dimension(dim); | 
|  |  | 
|  | it[i].input_stride = m_inputStrides[dim]; | 
|  | it[i].input_span = it[i].input_stride * (it[i].size - 1); | 
|  |  | 
|  | it[i].output_stride = output_strides[dim]; | 
|  | it[i].output_span = it[i].output_stride * (it[i].size - 1); | 
|  | } | 
|  |  | 
|  | const int inner_dim_idx = IsColMajor ? 0 : NumDims - 1; | 
|  |  | 
|  | // Total output size. | 
|  | const Index output_size = desc.size(); | 
|  |  | 
|  | // We will fill inner dimension of this size in the output. It might be | 
|  | // larger than the inner dimension in the input, so we might have to pad | 
|  | // before/after we copy values from the input inner dimension. | 
|  | const Index output_inner_dim_size = desc.dimension(inner_dim_idx); | 
|  |  | 
|  | // How many values to fill with padding BEFORE reading from the input inner | 
|  | // dimension. | 
|  | const Index output_inner_pad_before_size = | 
|  | input_offsets[inner_dim_idx] < 0 | 
|  | ? numext::mini(numext::abs(input_offsets[inner_dim_idx]), | 
|  | output_inner_dim_size) | 
|  | : 0; | 
|  |  | 
|  | // How many values we can actually copy from the input inner dimension. | 
|  | const Index output_inner_copy_size = numext::mini( | 
|  | // Want to copy from input. | 
|  | (output_inner_dim_size - output_inner_pad_before_size), | 
|  | // Can copy from input. | 
|  | numext::maxi( | 
|  | static_cast<Index>(m_impl.dimensions()[inner_dim_idx]) - | 
|  | (input_offsets[inner_dim_idx] + output_inner_pad_before_size), | 
|  | Index(0))); | 
|  |  | 
|  | eigen_assert(output_inner_copy_size >= 0); | 
|  |  | 
|  | // How many values to fill with padding AFTER reading from the input inner | 
|  | // dimension. | 
|  | const Index output_inner_pad_after_size = | 
|  | (output_inner_dim_size - output_inner_copy_size - | 
|  | output_inner_pad_before_size); | 
|  |  | 
|  | // Sanity check, sum of all sizes must be equal to the output size. | 
|  | eigen_assert(output_inner_dim_size == | 
|  | (output_inner_pad_before_size + output_inner_copy_size + | 
|  | output_inner_pad_after_size)); | 
|  |  | 
|  | // Keep track of current coordinates and padding in the output. | 
|  | DSizes<Index, NumDims> output_coord = output_offsets; | 
|  | DSizes<Index, NumDims> output_padded; | 
|  | for (int i = 0; i < NumDims; ++i) { | 
|  | const int dim = IsColMajor ? i : NumDims - i - 1; | 
|  | output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim); | 
|  | } | 
|  |  | 
|  | typedef internal::StridedLinearBufferCopy<ScalarNoConst, Index> LinCopy; | 
|  |  | 
|  | // Prepare storage for the materialized padding result. | 
|  | const typename TensorBlockV2::Storage block_storage = | 
|  | TensorBlockV2::prepareStorage(desc, scratch); | 
|  |  | 
|  | // Iterate copying data from `m_impl.data()` to the output buffer. | 
|  | for (Index size = 0; size < output_size; size += output_inner_dim_size) { | 
|  | // Detect if we are in the padded region (exclude innermost dimension). | 
|  | bool is_padded = false; | 
|  | for (int j = 1; j < NumDims; ++j) { | 
|  | const int dim = IsColMajor ? j : NumDims - j - 1; | 
|  | is_padded = output_padded[dim]; | 
|  | if (is_padded) break; | 
|  | } | 
|  |  | 
|  | if (is_padded) { | 
|  | // Fill with padding value. | 
|  | LinCopy::template Run<LinCopy::Kind::FillLinear>( | 
|  | typename LinCopy::Dst(output_offset, 1, block_storage.data()), | 
|  | typename LinCopy::Src(0, 0, &m_paddingValue), | 
|  | output_inner_dim_size); | 
|  |  | 
|  | } else { | 
|  | {  // Fill with padding before copying from input inner dimension. | 
|  | const Index out = output_offset; | 
|  |  | 
|  | LinCopy::template Run<LinCopy::Kind::FillLinear>( | 
|  | typename LinCopy::Dst(out, 1, block_storage.data()), | 
|  | typename LinCopy::Src(0, 0, &m_paddingValue), | 
|  | output_inner_pad_before_size); | 
|  | } | 
|  |  | 
|  | {  // Copy data from input inner dimension. | 
|  | const Index out = output_offset + output_inner_pad_before_size; | 
|  | const Index in = input_offset + output_inner_pad_before_size; | 
|  |  | 
|  | eigen_assert(output_inner_copy_size == 0 || m_impl.data() != NULL); | 
|  |  | 
|  | LinCopy::template Run<LinCopy::Kind::Linear>( | 
|  | typename LinCopy::Dst(out, 1, block_storage.data()), | 
|  | typename LinCopy::Src(in, 1, m_impl.data()), | 
|  | output_inner_copy_size); | 
|  | } | 
|  |  | 
|  | {  // Fill with padding after copying from input inner dimension. | 
|  | const Index out = output_offset + output_inner_pad_before_size + | 
|  | output_inner_copy_size; | 
|  |  | 
|  | LinCopy::template Run<LinCopy::Kind::FillLinear>( | 
|  | typename LinCopy::Dst(out, 1, block_storage.data()), | 
|  | typename LinCopy::Src(0, 0, &m_paddingValue), | 
|  | output_inner_pad_after_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int j = 0; j < NumDims - 1; ++j) { | 
|  | const int dim = IsColMajor ? j + 1 : NumDims - j - 2; | 
|  |  | 
|  | if (++it[j].count < it[j].size) { | 
|  | input_offset += it[j].input_stride; | 
|  | output_offset += it[j].output_stride; | 
|  | output_coord[dim] += 1; | 
|  | output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim); | 
|  | break; | 
|  | } | 
|  | it[j].count = 0; | 
|  | input_offset -= it[j].input_span; | 
|  | output_offset -= it[j].output_span; | 
|  | output_coord[dim] -= it[j].size - 1; | 
|  | output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim); | 
|  | } | 
|  | } | 
|  |  | 
|  | return block_storage.AsTensorMaterializedBlock(); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; } | 
|  |  | 
|  | #ifdef EIGEN_USE_SYCL | 
|  | // binding placeholder accessors to a command group handler for SYCL | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { | 
|  | m_impl.bind(cgh); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | private: | 
|  | struct BlockIteratorState { | 
|  | BlockIteratorState() | 
|  | : count(0), | 
|  | size(0), | 
|  | input_stride(0), | 
|  | input_span(0), | 
|  | output_stride(0), | 
|  | output_span(0) {} | 
|  |  | 
|  | Index count; | 
|  | Index size; | 
|  | Index input_stride; | 
|  | Index input_span; | 
|  | Index output_stride; | 
|  | Index output_span; | 
|  | }; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim( | 
|  | Index index, int dim_index) const { | 
|  | #if defined(EIGEN_HAS_INDEX_LIST) | 
|  | return (!internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0) && | 
|  | index < m_padding[dim_index].first) || | 
|  | (!internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0) && | 
|  | index >= m_dimensions[dim_index] - m_padding[dim_index].second); | 
|  | #else | 
|  | return (index < m_padding[dim_index].first) || | 
|  | (index >= m_dimensions[dim_index] - m_padding[dim_index].second); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero( | 
|  | int dim_index) const { | 
|  | #if defined(EIGEN_HAS_INDEX_LIST) | 
|  | return internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0); | 
|  | #else | 
|  | EIGEN_UNUSED_VARIABLE(dim_index); | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero( | 
|  | int dim_index) const { | 
|  | #if defined(EIGEN_HAS_INDEX_LIST) | 
|  | return internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0); | 
|  | #else | 
|  | EIGEN_UNUSED_VARIABLE(dim_index); | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | void updateCostPerDimension(TensorOpCost& cost, int i, bool first) const { | 
|  | const double in = static_cast<double>(m_impl.dimensions()[i]); | 
|  | const double out = in + m_padding[i].first + m_padding[i].second; | 
|  | if (out == 0) | 
|  | return; | 
|  | const double reduction = in / out; | 
|  | cost *= reduction; | 
|  | if (first) { | 
|  | cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() + | 
|  | reduction * (1 * TensorOpCost::AddCost<Index>())); | 
|  | } else { | 
|  | cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() + | 
|  | 2 * TensorOpCost::MulCost<Index>() + | 
|  | reduction * (2 * TensorOpCost::MulCost<Index>() + | 
|  | 1 * TensorOpCost::DivCost<Index>())); | 
|  | } | 
|  | } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); | 
|  |  | 
|  | const Index initialIndex = index; | 
|  | Index inputIndex = 0; | 
|  | EIGEN_UNROLL_LOOP | 
|  | for (int i = NumDims - 1; i > 0; --i) { | 
|  | const Index firstIdx = index; | 
|  | const Index lastIdx = index + PacketSize - 1; | 
|  | const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i]; | 
|  | const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i]; | 
|  | const Index lastPaddedRight = m_outputStrides[i+1]; | 
|  |  | 
|  | if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) { | 
|  | // all the coefficient are in the padding zone. | 
|  | return internal::pset1<PacketReturnType>(m_paddingValue); | 
|  | } | 
|  | else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { | 
|  | // all the coefficient are in the padding zone. | 
|  | return internal::pset1<PacketReturnType>(m_paddingValue); | 
|  | } | 
|  | else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { | 
|  | // all the coefficient are between the 2 padding zones. | 
|  | const Index idx = index / m_outputStrides[i]; | 
|  | inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; | 
|  | index -= idx * m_outputStrides[i]; | 
|  | } | 
|  | else { | 
|  | // Every other case | 
|  | return packetWithPossibleZero(initialIndex); | 
|  | } | 
|  | } | 
|  |  | 
|  | const Index lastIdx = index + PacketSize - 1; | 
|  | const Index firstIdx = index; | 
|  | const Index lastPaddedLeft = m_padding[0].first; | 
|  | const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second); | 
|  | const Index lastPaddedRight = m_outputStrides[1]; | 
|  |  | 
|  | if (!isLeftPaddingCompileTimeZero(0) && lastIdx < lastPaddedLeft) { | 
|  | // all the coefficient are in the padding zone. | 
|  | return internal::pset1<PacketReturnType>(m_paddingValue); | 
|  | } | 
|  | else if (!isRightPaddingCompileTimeZero(0) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { | 
|  | // all the coefficient are in the padding zone. | 
|  | return internal::pset1<PacketReturnType>(m_paddingValue); | 
|  | } | 
|  | else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { | 
|  | // all the coefficient are between the 2 padding zones. | 
|  | inputIndex += (index - m_padding[0].first); | 
|  | return m_impl.template packet<Unaligned>(inputIndex); | 
|  | } | 
|  | // Every other case | 
|  | return packetWithPossibleZero(initialIndex); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); | 
|  |  | 
|  | const Index initialIndex = index; | 
|  | Index inputIndex = 0; | 
|  | EIGEN_UNROLL_LOOP | 
|  | for (int i = 0; i < NumDims - 1; ++i) { | 
|  | const Index firstIdx = index; | 
|  | const Index lastIdx = index + PacketSize - 1; | 
|  | const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1]; | 
|  | const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1]; | 
|  | const Index lastPaddedRight = m_outputStrides[i]; | 
|  |  | 
|  | if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) { | 
|  | // all the coefficient are in the padding zone. | 
|  | return internal::pset1<PacketReturnType>(m_paddingValue); | 
|  | } | 
|  | else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { | 
|  | // all the coefficient are in the padding zone. | 
|  | return internal::pset1<PacketReturnType>(m_paddingValue); | 
|  | } | 
|  | else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { | 
|  | // all the coefficient are between the 2 padding zones. | 
|  | const Index idx = index / m_outputStrides[i+1]; | 
|  | inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; | 
|  | index -= idx * m_outputStrides[i+1]; | 
|  | } | 
|  | else { | 
|  | // Every other case | 
|  | return packetWithPossibleZero(initialIndex); | 
|  | } | 
|  | } | 
|  |  | 
|  | const Index lastIdx = index + PacketSize - 1; | 
|  | const Index firstIdx = index; | 
|  | const Index lastPaddedLeft = m_padding[NumDims-1].first; | 
|  | const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second); | 
|  | const Index lastPaddedRight = m_outputStrides[NumDims-1]; | 
|  |  | 
|  | if (!isLeftPaddingCompileTimeZero(NumDims-1) && lastIdx < lastPaddedLeft) { | 
|  | // all the coefficient are in the padding zone. | 
|  | return internal::pset1<PacketReturnType>(m_paddingValue); | 
|  | } | 
|  | else if (!isRightPaddingCompileTimeZero(NumDims-1) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { | 
|  | // all the coefficient are in the padding zone. | 
|  | return internal::pset1<PacketReturnType>(m_paddingValue); | 
|  | } | 
|  | else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { | 
|  | // all the coefficient are between the 2 padding zones. | 
|  | inputIndex += (index - m_padding[NumDims-1].first); | 
|  | return m_impl.template packet<Unaligned>(inputIndex); | 
|  | } | 
|  | // Every other case | 
|  | return packetWithPossibleZero(initialIndex); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const | 
|  | { | 
|  | EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; | 
|  | EIGEN_UNROLL_LOOP | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | values[i] = coeff(index+i); | 
|  | } | 
|  | PacketReturnType rslt = internal::pload<PacketReturnType>(values); | 
|  | return rslt; | 
|  | } | 
|  |  | 
|  | Dimensions m_dimensions; | 
|  | array<Index, NumDims+1> m_outputStrides; | 
|  | array<Index, NumDims> m_inputStrides; | 
|  | TensorEvaluator<ArgType, Device> m_impl; | 
|  | PaddingDimensions m_padding; | 
|  |  | 
|  | Scalar m_paddingValue; | 
|  |  | 
|  | const Device EIGEN_DEVICE_REF m_device; | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H |