|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_CXX11_TENSOR_TENSOR_SCAN_H | 
|  | #define EIGEN_CXX11_TENSOR_TENSOR_SCAN_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Op, typename XprType> | 
|  | struct traits<TensorScanOp<Op, XprType> > | 
|  | : public traits<XprType> { | 
|  | typedef typename XprType::Scalar Scalar; | 
|  | typedef traits<XprType> XprTraits; | 
|  | typedef typename XprTraits::StorageKind StorageKind; | 
|  | typedef typename XprType::Nested Nested; | 
|  | typedef typename remove_reference<Nested>::type _Nested; | 
|  | static const int NumDimensions = XprTraits::NumDimensions; | 
|  | static const int Layout = XprTraits::Layout; | 
|  | typedef typename XprTraits::PointerType PointerType; | 
|  | }; | 
|  |  | 
|  | template<typename Op, typename XprType> | 
|  | struct eval<TensorScanOp<Op, XprType>, Eigen::Dense> | 
|  | { | 
|  | typedef const TensorScanOp<Op, XprType>& type; | 
|  | }; | 
|  |  | 
|  | template<typename Op, typename XprType> | 
|  | struct nested<TensorScanOp<Op, XprType>, 1, | 
|  | typename eval<TensorScanOp<Op, XprType> >::type> | 
|  | { | 
|  | typedef TensorScanOp<Op, XprType> type; | 
|  | }; | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \class TensorScan | 
|  | * \ingroup CXX11_Tensor_Module | 
|  | * | 
|  | * \brief Tensor scan class. | 
|  | */ | 
|  | template <typename Op, typename XprType> | 
|  | class TensorScanOp | 
|  | : public TensorBase<TensorScanOp<Op, XprType>, ReadOnlyAccessors> { | 
|  | public: | 
|  | typedef typename Eigen::internal::traits<TensorScanOp>::Scalar Scalar; | 
|  | typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; | 
|  | typedef typename XprType::CoeffReturnType CoeffReturnType; | 
|  | typedef typename Eigen::internal::nested<TensorScanOp>::type Nested; | 
|  | typedef typename Eigen::internal::traits<TensorScanOp>::StorageKind StorageKind; | 
|  | typedef typename Eigen::internal::traits<TensorScanOp>::Index Index; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorScanOp( | 
|  | const XprType& expr, const Index& axis, bool exclusive = false, const Op& op = Op()) | 
|  | : m_expr(expr), m_axis(axis), m_accumulator(op), m_exclusive(exclusive) {} | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
|  | const Index axis() const { return m_axis; } | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
|  | const XprType& expression() const { return m_expr; } | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
|  | const Op accumulator() const { return m_accumulator; } | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
|  | bool exclusive() const { return m_exclusive; } | 
|  |  | 
|  | protected: | 
|  | typename XprType::Nested m_expr; | 
|  | const Index m_axis; | 
|  | const Op m_accumulator; | 
|  | const bool m_exclusive; | 
|  | }; | 
|  |  | 
|  | template <typename Self, typename Reducer, typename Device> | 
|  | struct ScanLauncher; | 
|  |  | 
|  | // Eval as rvalue | 
|  | template <typename Op, typename ArgType, typename Device> | 
|  | struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> { | 
|  |  | 
|  | typedef TensorScanOp<Op, ArgType> XprType; | 
|  | typedef typename XprType::Index Index; | 
|  | typedef const ArgType ChildType; | 
|  | static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; | 
|  | typedef DSizes<Index, NumDims> Dimensions; | 
|  | typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; | 
|  | typedef typename XprType::CoeffReturnType CoeffReturnType; | 
|  | typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; | 
|  | typedef TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> Self; | 
|  | typedef StorageMemory<Scalar, Device> Storage; | 
|  | typedef typename Storage::Type EvaluatorPointerType; | 
|  |  | 
|  | enum { | 
|  | IsAligned = false, | 
|  | PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), | 
|  | BlockAccessV2 = false, | 
|  | PreferBlockAccess = false, | 
|  | Layout = TensorEvaluator<ArgType, Device>::Layout, | 
|  | CoordAccess = false, | 
|  | RawAccess = true | 
|  | }; | 
|  |  | 
|  | //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// | 
|  | typedef internal::TensorBlockNotImplemented TensorBlockV2; | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, | 
|  | const Device& device) | 
|  | : m_impl(op.expression(), device), | 
|  | m_device(device), | 
|  | m_exclusive(op.exclusive()), | 
|  | m_accumulator(op.accumulator()), | 
|  | m_size(m_impl.dimensions()[op.axis()]), | 
|  | m_stride(1), m_consume_dim(op.axis()), | 
|  | m_output(NULL) { | 
|  |  | 
|  | // Accumulating a scalar isn't supported. | 
|  | EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); | 
|  | eigen_assert(op.axis() >= 0 && op.axis() < NumDims); | 
|  |  | 
|  | // Compute stride of scan axis | 
|  | const Dimensions& dims = m_impl.dimensions(); | 
|  | if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { | 
|  | for (int i = 0; i < op.axis(); ++i) { | 
|  | m_stride = m_stride * dims[i]; | 
|  | } | 
|  | } else { | 
|  | // dims can only be indexed through unsigned integers, | 
|  | // so let's use an unsigned type to let the compiler knows. | 
|  | // This prevents stupid warnings: ""'*((void*)(& evaluator)+64)[18446744073709551615]' may be used uninitialized in this function" | 
|  | unsigned int axis = internal::convert_index<unsigned int>(op.axis()); | 
|  | for (unsigned int i = NumDims - 1; i > axis; --i) { | 
|  | m_stride = m_stride * dims[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { | 
|  | return m_impl.dimensions(); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& stride() const { | 
|  | return m_stride; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& consume_dim() const { | 
|  | return m_consume_dim; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& size() const { | 
|  | return m_size; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op& accumulator() const { | 
|  | return m_accumulator; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const { | 
|  | return m_exclusive; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& inner() const { | 
|  | return m_impl; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const { | 
|  | return m_device; | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { | 
|  | m_impl.evalSubExprsIfNeeded(NULL); | 
|  | ScanLauncher<Self, Op, Device> launcher; | 
|  | if (data) { | 
|  | launcher(*this, data); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const Index total_size = internal::array_prod(dimensions()); | 
|  | m_output = static_cast<EvaluatorPointerType>(m_device.get((Scalar*) m_device.allocate_temp(total_size * sizeof(Scalar)))); | 
|  | launcher(*this, m_output); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template<int LoadMode> | 
|  | EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { | 
|  | return internal::ploadt<PacketReturnType, LoadMode>(m_output + index); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const | 
|  | { | 
|  | return m_output; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const | 
|  | { | 
|  | return m_output[index]; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const { | 
|  | return TensorOpCost(sizeof(CoeffReturnType), 0, 0); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { | 
|  | if (m_output) { | 
|  | m_device.deallocate_temp(m_output); | 
|  | m_output = NULL; | 
|  | } | 
|  | m_impl.cleanup(); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_USE_SYCL | 
|  | // binding placeholder accessors to a command group handler for SYCL | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { | 
|  | m_impl.bind(cgh); | 
|  | m_output.bind(cgh); | 
|  | } | 
|  | #endif | 
|  | protected: | 
|  | TensorEvaluator<ArgType, Device> m_impl; | 
|  | const Device EIGEN_DEVICE_REF m_device; | 
|  | const bool m_exclusive; | 
|  | Op m_accumulator; | 
|  | const Index m_size; | 
|  | Index m_stride; | 
|  | Index m_consume_dim; | 
|  | EvaluatorPointerType m_output; | 
|  | }; | 
|  |  | 
|  | // CPU implementation of scan | 
|  | // TODO(ibab) This single-threaded implementation should be parallelized, | 
|  | // at least by running multiple scans at the same time. | 
|  | template <typename Self, typename Reducer, typename Device> | 
|  | struct ScanLauncher { | 
|  | void operator()(Self& self, typename Self::CoeffReturnType *data) { | 
|  | Index total_size = internal::array_prod(self.dimensions()); | 
|  |  | 
|  | // We fix the index along the scan axis to 0 and perform a | 
|  | // scan per remaining entry. The iteration is split into two nested | 
|  | // loops to avoid an integer division by keeping track of each idx1 and idx2. | 
|  | for (Index idx1 = 0; idx1 < total_size; idx1 += self.stride() * self.size()) { | 
|  | for (Index idx2 = 0; idx2 < self.stride(); idx2++) { | 
|  | // Calculate the starting offset for the scan | 
|  | Index offset = idx1 + idx2; | 
|  |  | 
|  | // Compute the scan along the axis, starting at the calculated offset | 
|  | typename Self::CoeffReturnType accum = self.accumulator().initialize(); | 
|  | for (Index idx3 = 0; idx3 < self.size(); idx3++) { | 
|  | Index curr = offset + idx3 * self.stride(); | 
|  |  | 
|  | if (self.exclusive()) { | 
|  | data[curr] = self.accumulator().finalize(accum); | 
|  | self.accumulator().reduce(self.inner().coeff(curr), &accum); | 
|  | } else { | 
|  | self.accumulator().reduce(self.inner().coeff(curr), &accum); | 
|  | data[curr] = self.accumulator().finalize(accum); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | #if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC)) | 
|  |  | 
|  | // GPU implementation of scan | 
|  | // TODO(ibab) This placeholder implementation performs multiple scans in | 
|  | // parallel, but it would be better to use a parallel scan algorithm and | 
|  | // optimize memory access. | 
|  | template <typename Self, typename Reducer> | 
|  | __global__ void ScanKernel(Self self, Index total_size, typename Self::CoeffReturnType* data) { | 
|  | // Compute offset as in the CPU version | 
|  | Index val = threadIdx.x + blockIdx.x * blockDim.x; | 
|  | Index offset = (val / self.stride()) * self.stride() * self.size() + val % self.stride(); | 
|  |  | 
|  | if (offset + (self.size() - 1) * self.stride() < total_size) { | 
|  | // Compute the scan along the axis, starting at the calculated offset | 
|  | typename Self::CoeffReturnType accum = self.accumulator().initialize(); | 
|  | for (Index idx = 0; idx < self.size(); idx++) { | 
|  | Index curr = offset + idx * self.stride(); | 
|  | if (self.exclusive()) { | 
|  | data[curr] = self.accumulator().finalize(accum); | 
|  | self.accumulator().reduce(self.inner().coeff(curr), &accum); | 
|  | } else { | 
|  | self.accumulator().reduce(self.inner().coeff(curr), &accum); | 
|  | data[curr] = self.accumulator().finalize(accum); | 
|  | } | 
|  | } | 
|  | } | 
|  | __syncthreads(); | 
|  |  | 
|  | } | 
|  |  | 
|  | template <typename Self, typename Reducer> | 
|  | struct ScanLauncher<Self, Reducer, GpuDevice> { | 
|  | void operator()(const Self& self, typename Self::CoeffReturnType* data) { | 
|  | Index total_size = internal::array_prod(self.dimensions()); | 
|  | Index num_blocks = (total_size / self.size() + 63) / 64; | 
|  | Index block_size = 64; | 
|  |  | 
|  | LAUNCH_GPU_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0, self.device(), self, total_size, data); | 
|  | } | 
|  | }; | 
|  | #endif  // EIGEN_USE_GPU && (EIGEN_GPUCC) | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_CXX11_TENSOR_TENSOR_SCAN_H |