|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_GMRES_H | 
|  | #define EIGEN_GMRES_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** | 
|  | * Generalized Minimal Residual Algorithm based on the | 
|  | * Arnoldi algorithm implemented with Householder reflections. | 
|  | * | 
|  | * Parameters: | 
|  | *  \param mat       matrix of linear system of equations | 
|  | *  \param rhs       right hand side vector of linear system of equations | 
|  | *  \param x         on input: initial guess, on output: solution | 
|  | *  \param precond   preconditioner used | 
|  | *  \param iters     on input: maximum number of iterations to perform | 
|  | *                   on output: number of iterations performed | 
|  | *  \param restart   number of iterations for a restart | 
|  | *  \param tol_error on input: relative residual tolerance | 
|  | *                   on output: residuum achieved | 
|  | * | 
|  | * \sa IterativeMethods::bicgstab() | 
|  | * | 
|  | * | 
|  | * For references, please see: | 
|  | * | 
|  | * Saad, Y. and Schultz, M. H. | 
|  | * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. | 
|  | * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. | 
|  | * | 
|  | * Saad, Y. | 
|  | * Iterative Methods for Sparse Linear Systems. | 
|  | * Society for Industrial and Applied Mathematics, Philadelphia, 2003. | 
|  | * | 
|  | * Walker, H. F. | 
|  | * Implementations of the GMRES method. | 
|  | * Comput.Phys.Comm. 53, 1989, pp. 311 - 320. | 
|  | * | 
|  | * Walker, H. F. | 
|  | * Implementation of the GMRES Method using Householder Transformations. | 
|  | * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. | 
|  | * | 
|  | */ | 
|  | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> | 
|  | bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, | 
|  | Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) { | 
|  |  | 
|  | using std::sqrt; | 
|  | using std::abs; | 
|  |  | 
|  | typedef typename Dest::RealScalar RealScalar; | 
|  | typedef typename Dest::Scalar Scalar; | 
|  | typedef Matrix < Scalar, Dynamic, 1 > VectorType; | 
|  | typedef Matrix < Scalar, Dynamic, Dynamic, ColMajor> FMatrixType; | 
|  |  | 
|  | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | 
|  |  | 
|  | if(rhs.norm() <= considerAsZero) | 
|  | { | 
|  | x.setZero(); | 
|  | tol_error = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | RealScalar tol = tol_error; | 
|  | const Index maxIters = iters; | 
|  | iters = 0; | 
|  |  | 
|  | const Index m = mat.rows(); | 
|  |  | 
|  | // residual and preconditioned residual | 
|  | VectorType p0 = rhs - mat*x; | 
|  | VectorType r0 = precond.solve(p0); | 
|  |  | 
|  | const RealScalar r0Norm = r0.norm(); | 
|  |  | 
|  | // is initial guess already good enough? | 
|  | if(r0Norm == 0) | 
|  | { | 
|  | tol_error = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // storage for Hessenberg matrix and Householder data | 
|  | FMatrixType H   = FMatrixType::Zero(m, restart + 1); | 
|  | VectorType w    = VectorType::Zero(restart + 1); | 
|  | VectorType tau  = VectorType::Zero(restart + 1); | 
|  |  | 
|  | // storage for Jacobi rotations | 
|  | std::vector < JacobiRotation < Scalar > > G(restart); | 
|  |  | 
|  | // storage for temporaries | 
|  | VectorType t(m), v(m), workspace(m), x_new(m); | 
|  |  | 
|  | // generate first Householder vector | 
|  | Ref<VectorType> H0_tail = H.col(0).tail(m - 1); | 
|  | RealScalar beta; | 
|  | r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); | 
|  | w(0) = Scalar(beta); | 
|  |  | 
|  | for (Index k = 1; k <= restart; ++k) | 
|  | { | 
|  | ++iters; | 
|  |  | 
|  | v = VectorType::Unit(m, k - 1); | 
|  |  | 
|  | // apply Householder reflections H_{1} ... H_{k-1} to v | 
|  | // TODO: use a HouseholderSequence | 
|  | for (Index i = k - 1; i >= 0; --i) { | 
|  | v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); | 
|  | } | 
|  |  | 
|  | // apply matrix M to v:  v = mat * v; | 
|  | t.noalias() = mat * v; | 
|  | v = precond.solve(t); | 
|  |  | 
|  | // apply Householder reflections H_{k-1} ... H_{1} to v | 
|  | // TODO: use a HouseholderSequence | 
|  | for (Index i = 0; i < k; ++i) { | 
|  | v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); | 
|  | } | 
|  |  | 
|  | if (v.tail(m - k).norm() != 0.0) | 
|  | { | 
|  | if (k <= restart) | 
|  | { | 
|  | // generate new Householder vector | 
|  | Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1); | 
|  | v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta); | 
|  |  | 
|  | // apply Householder reflection H_{k} to v | 
|  | v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (k > 1) | 
|  | { | 
|  | for (Index i = 0; i < k - 1; ++i) | 
|  | { | 
|  | // apply old Givens rotations to v | 
|  | v.applyOnTheLeft(i, i + 1, G[i].adjoint()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (k<m && v(k) != (Scalar) 0) | 
|  | { | 
|  | // determine next Givens rotation | 
|  | G[k - 1].makeGivens(v(k - 1), v(k)); | 
|  |  | 
|  | // apply Givens rotation to v and w | 
|  | v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); | 
|  | w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); | 
|  | } | 
|  |  | 
|  | // insert coefficients into upper matrix triangle | 
|  | H.col(k-1).head(k) = v.head(k); | 
|  |  | 
|  | tol_error = abs(w(k)) / r0Norm; | 
|  | bool stop = (k==m || tol_error < tol || iters == maxIters); | 
|  |  | 
|  | if (stop || k == restart) | 
|  | { | 
|  | // solve upper triangular system | 
|  | Ref<VectorType> y = w.head(k); | 
|  | H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y); | 
|  |  | 
|  | // use Horner-like scheme to calculate solution vector | 
|  | x_new.setZero(); | 
|  | for (Index i = k - 1; i >= 0; --i) | 
|  | { | 
|  | x_new(i) += y(i); | 
|  | // apply Householder reflection H_{i} to x_new | 
|  | x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); | 
|  | } | 
|  |  | 
|  | x += x_new; | 
|  |  | 
|  | if(stop) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | else | 
|  | { | 
|  | k=0; | 
|  |  | 
|  | // reset data for restart | 
|  | p0.noalias() = rhs - mat*x; | 
|  | r0 = precond.solve(p0); | 
|  |  | 
|  | // clear Hessenberg matrix and Householder data | 
|  | H.setZero(); | 
|  | w.setZero(); | 
|  | tau.setZero(); | 
|  |  | 
|  | // generate first Householder vector | 
|  | r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); | 
|  | w(0) = Scalar(beta); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  |  | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | template< typename _MatrixType, | 
|  | typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > | 
|  | class GMRES; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template< typename _MatrixType, typename _Preconditioner> | 
|  | struct traits<GMRES<_MatrixType,_Preconditioner> > | 
|  | { | 
|  | typedef _MatrixType MatrixType; | 
|  | typedef _Preconditioner Preconditioner; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** \ingroup IterativeLinearSolvers_Module | 
|  | * \brief A GMRES solver for sparse square problems | 
|  | * | 
|  | * This class allows to solve for A.x = b sparse linear problems using a generalized minimal | 
|  | * residual method. The vectors x and b can be either dense or sparse. | 
|  | * | 
|  | * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. | 
|  | * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner | 
|  | * | 
|  | * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() | 
|  | * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations | 
|  | * and NumTraits<Scalar>::epsilon() for the tolerance. | 
|  | * | 
|  | * This class can be used as the direct solver classes. Here is a typical usage example: | 
|  | * \code | 
|  | * int n = 10000; | 
|  | * VectorXd x(n), b(n); | 
|  | * SparseMatrix<double> A(n,n); | 
|  | * // fill A and b | 
|  | * GMRES<SparseMatrix<double> > solver(A); | 
|  | * x = solver.solve(b); | 
|  | * std::cout << "#iterations:     " << solver.iterations() << std::endl; | 
|  | * std::cout << "estimated error: " << solver.error()      << std::endl; | 
|  | * // update b, and solve again | 
|  | * x = solver.solve(b); | 
|  | * \endcode | 
|  | * | 
|  | * By default the iterations start with x=0 as an initial guess of the solution. | 
|  | * One can control the start using the solveWithGuess() method. | 
|  | * | 
|  | * GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. | 
|  | * | 
|  | * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner | 
|  | */ | 
|  | template< typename _MatrixType, typename _Preconditioner> | 
|  | class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> > | 
|  | { | 
|  | typedef IterativeSolverBase<GMRES> Base; | 
|  | using Base::matrix; | 
|  | using Base::m_error; | 
|  | using Base::m_iterations; | 
|  | using Base::m_info; | 
|  | using Base::m_isInitialized; | 
|  |  | 
|  | private: | 
|  | Index m_restart; | 
|  |  | 
|  | public: | 
|  | using Base::_solve_impl; | 
|  | typedef _MatrixType MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef _Preconditioner Preconditioner; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Default constructor. */ | 
|  | GMRES() : Base(), m_restart(30) {} | 
|  |  | 
|  | /** Initialize the solver with matrix \a A for further \c Ax=b solving. | 
|  | * | 
|  | * This constructor is a shortcut for the default constructor followed | 
|  | * by a call to compute(). | 
|  | * | 
|  | * \warning this class stores a reference to the matrix A as well as some | 
|  | * precomputed values that depend on it. Therefore, if \a A is changed | 
|  | * this class becomes invalid. Call compute() to update it with the new | 
|  | * matrix A, or modify a copy of A. | 
|  | */ | 
|  | template<typename MatrixDerived> | 
|  | explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {} | 
|  |  | 
|  | ~GMRES() {} | 
|  |  | 
|  | /** Get the number of iterations after that a restart is performed. | 
|  | */ | 
|  | Index get_restart() { return m_restart; } | 
|  |  | 
|  | /** Set the number of iterations after that a restart is performed. | 
|  | *  \param restart   number of iterations for a restarti, default is 30. | 
|  | */ | 
|  | void set_restart(const Index restart) { m_restart=restart; } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const | 
|  | { | 
|  | m_iterations = Base::maxIterations(); | 
|  | m_error = Base::m_tolerance; | 
|  | bool ret = internal::gmres(matrix(), b, x, Base::m_preconditioner, m_iterations, m_restart, m_error); | 
|  | m_info = (!ret) ? NumericalIssue | 
|  | : m_error <= Base::m_tolerance ? Success | 
|  | : NoConvergence; | 
|  | } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_GMRES_H |