|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_MATRIX_LOGARITHM | 
|  | #define EIGEN_MATRIX_LOGARITHM | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Scalar> | 
|  | struct matrix_log_min_pade_degree | 
|  | { | 
|  | static const int value = 3; | 
|  | }; | 
|  |  | 
|  | template <typename Scalar> | 
|  | struct matrix_log_max_pade_degree | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | static const int value = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision | 
|  | std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision | 
|  | std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision | 
|  | std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double | 
|  | 11;  // quadruple precision | 
|  | }; | 
|  |  | 
|  | /** \brief Compute logarithm of 2x2 triangular matrix. */ | 
|  | template <typename MatrixType> | 
|  | void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | using std::abs; | 
|  | using std::ceil; | 
|  | using std::imag; | 
|  | using std::log; | 
|  |  | 
|  | Scalar logA00 = log(A(0,0)); | 
|  | Scalar logA11 = log(A(1,1)); | 
|  |  | 
|  | result(0,0) = logA00; | 
|  | result(1,0) = Scalar(0); | 
|  | result(1,1) = logA11; | 
|  |  | 
|  | Scalar y = A(1,1) - A(0,0); | 
|  | if (y==Scalar(0)) | 
|  | { | 
|  | result(0,1) = A(0,1) / A(0,0); | 
|  | } | 
|  | else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) | 
|  | { | 
|  | result(0,1) = A(0,1) * (logA11 - logA00) / y; | 
|  | } | 
|  | else | 
|  | { | 
|  | // computation in previous branch is inaccurate if A(1,1) \approx A(0,0) | 
|  | RealScalar unwindingNumber = ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)); | 
|  | result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,RealScalar(2*EIGEN_PI)*unwindingNumber)) / y; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */ | 
|  | inline int matrix_log_get_pade_degree(float normTminusI) | 
|  | { | 
|  | const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1, | 
|  | 5.3149729967117310e-1 }; | 
|  | const int minPadeDegree = matrix_log_min_pade_degree<float>::value; | 
|  | const int maxPadeDegree = matrix_log_max_pade_degree<float>::value; | 
|  | int degree = minPadeDegree; | 
|  | for (; degree <= maxPadeDegree; ++degree) | 
|  | if (normTminusI <= maxNormForPade[degree - minPadeDegree]) | 
|  | break; | 
|  | return degree; | 
|  | } | 
|  |  | 
|  | /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */ | 
|  | inline int matrix_log_get_pade_degree(double normTminusI) | 
|  | { | 
|  | const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2, | 
|  | 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 }; | 
|  | const int minPadeDegree = matrix_log_min_pade_degree<double>::value; | 
|  | const int maxPadeDegree = matrix_log_max_pade_degree<double>::value; | 
|  | int degree = minPadeDegree; | 
|  | for (; degree <= maxPadeDegree; ++degree) | 
|  | if (normTminusI <= maxNormForPade[degree - minPadeDegree]) | 
|  | break; | 
|  | return degree; | 
|  | } | 
|  |  | 
|  | /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */ | 
|  | inline int matrix_log_get_pade_degree(long double normTminusI) | 
|  | { | 
|  | #if   LDBL_MANT_DIG == 53         // double precision | 
|  | const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L, | 
|  | 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L }; | 
|  | #elif LDBL_MANT_DIG <= 64         // extended precision | 
|  | const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L, | 
|  | 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L, | 
|  | 2.32777776523703892094e-1L }; | 
|  | #elif LDBL_MANT_DIG <= 106        // double-double | 
|  | const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */, | 
|  | 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L, | 
|  | 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L, | 
|  | 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L, | 
|  | 1.05026503471351080481093652651105e-1L }; | 
|  | #else                             // quadruple precision | 
|  | const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */, | 
|  | 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L, | 
|  | 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L, | 
|  | 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L, | 
|  | 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L }; | 
|  | #endif | 
|  | const int minPadeDegree = matrix_log_min_pade_degree<long double>::value; | 
|  | const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value; | 
|  | int degree = minPadeDegree; | 
|  | for (; degree <= maxPadeDegree; ++degree) | 
|  | if (normTminusI <= maxNormForPade[degree - minPadeDegree]) | 
|  | break; | 
|  | return degree; | 
|  | } | 
|  |  | 
|  | /* \brief Compute Pade approximation to matrix logarithm */ | 
|  | template <typename MatrixType> | 
|  | void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree) | 
|  | { | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | const int minPadeDegree = 3; | 
|  | const int maxPadeDegree = 11; | 
|  | assert(degree >= minPadeDegree && degree <= maxPadeDegree); | 
|  | // FIXME this creates float-conversion-warnings if these are enabled. | 
|  | // Either manually convert each value, or disable the warning locally | 
|  | const RealScalar nodes[][maxPadeDegree] = { | 
|  | { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,  // degree 3 | 
|  | 0.8872983346207416885179265399782400L }, | 
|  | { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,  // degree 4 | 
|  | 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L }, | 
|  | { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,  // degree 5 | 
|  | 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L, | 
|  | 0.9530899229693319963988134391496965L }, | 
|  | { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,  // degree 6 | 
|  | 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L, | 
|  | 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L }, | 
|  | { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,  // degree 7 | 
|  | 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L, | 
|  | 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L, | 
|  | 0.9745539561713792622630948420239256L }, | 
|  | { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,  // degree 8 | 
|  | 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L, | 
|  | 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L, | 
|  | 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L }, | 
|  | { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,  // degree 9 | 
|  | 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L, | 
|  | 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L, | 
|  | 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L, | 
|  | 0.9840801197538130449177881014518364L }, | 
|  | { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,  // degree 10 | 
|  | 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L, | 
|  | 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L, | 
|  | 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L, | 
|  | 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L }, | 
|  | { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,  // degree 11 | 
|  | 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L, | 
|  | 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L, | 
|  | 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L, | 
|  | 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L, | 
|  | 0.9891143290730284964019690005614287L } }; | 
|  |  | 
|  | const RealScalar weights[][maxPadeDegree] = { | 
|  | { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,  // degree 3 | 
|  | 0.2777777777777777777777777777777778L }, | 
|  | { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,  // degree 4 | 
|  | 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L }, | 
|  | { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,  // degree 5 | 
|  | 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L, | 
|  | 0.1184634425280945437571320203599587L }, | 
|  | { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,  // degree 6 | 
|  | 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L, | 
|  | 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L }, | 
|  | { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,  // degree 7 | 
|  | 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L, | 
|  | 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L, | 
|  | 0.0647424830844348466353057163395410L }, | 
|  | { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,  // degree 8 | 
|  | 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L, | 
|  | 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L, | 
|  | 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L }, | 
|  | { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,  // degree 9 | 
|  | 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L, | 
|  | 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L, | 
|  | 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L, | 
|  | 0.0406371941807872059859460790552618L }, | 
|  | { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,  // degree 10 | 
|  | 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L, | 
|  | 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L, | 
|  | 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L, | 
|  | 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L }, | 
|  | { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,  // degree 11 | 
|  | 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L, | 
|  | 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L, | 
|  | 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L, | 
|  | 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L, | 
|  | 0.0278342835580868332413768602212743L } }; | 
|  |  | 
|  | MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); | 
|  | result.setZero(T.rows(), T.rows()); | 
|  | for (int k = 0; k < degree; ++k) { | 
|  | RealScalar weight = weights[degree-minPadeDegree][k]; | 
|  | RealScalar node = nodes[degree-minPadeDegree][k]; | 
|  | result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI) | 
|  | .template triangularView<Upper>().solve(TminusI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \brief Compute logarithm of triangular matrices with size > 2. | 
|  | * \details This uses a inverse scale-and-square algorithm. */ | 
|  | template <typename MatrixType> | 
|  | void matrix_log_compute_big(const MatrixType& A, MatrixType& result) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | using std::pow; | 
|  |  | 
|  | int numberOfSquareRoots = 0; | 
|  | int numberOfExtraSquareRoots = 0; | 
|  | int degree; | 
|  | MatrixType T = A, sqrtT; | 
|  |  | 
|  | const int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value; | 
|  | const RealScalar maxNormForPade = RealScalar( | 
|  | maxPadeDegree<= 5? 5.3149729967117310e-1L:                    // single precision | 
|  | maxPadeDegree<= 7? 2.6429608311114350e-1L:                    // double precision | 
|  | maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision | 
|  | maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double | 
|  | 1.1880960220216759245467951592883642e-1L); // quadruple precision | 
|  |  | 
|  | while (true) { | 
|  | RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff(); | 
|  | if (normTminusI < maxNormForPade) { | 
|  | degree = matrix_log_get_pade_degree(normTminusI); | 
|  | int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2)); | 
|  | if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) | 
|  | break; | 
|  | ++numberOfExtraSquareRoots; | 
|  | } | 
|  | matrix_sqrt_triangular(T, sqrtT); | 
|  | T = sqrtT.template triangularView<Upper>(); | 
|  | ++numberOfSquareRoots; | 
|  | } | 
|  |  | 
|  | matrix_log_compute_pade(result, T, degree); | 
|  | result *= pow(RealScalar(2), RealScalar(numberOfSquareRoots)); // TODO replace by bitshift if possible | 
|  | } | 
|  |  | 
|  | /** \ingroup MatrixFunctions_Module | 
|  | * \class MatrixLogarithmAtomic | 
|  | * \brief Helper class for computing matrix logarithm of atomic matrices. | 
|  | * | 
|  | * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other. | 
|  | * | 
|  | * \sa class MatrixFunctionAtomic, MatrixBase::log() | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | class MatrixLogarithmAtomic | 
|  | { | 
|  | public: | 
|  | /** \brief Compute matrix logarithm of atomic matrix | 
|  | * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic | 
|  | * \returns  The logarithm of \p A. | 
|  | */ | 
|  | MatrixType compute(const MatrixType& A); | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A) | 
|  | { | 
|  | using std::log; | 
|  | MatrixType result(A.rows(), A.rows()); | 
|  | if (A.rows() == 1) | 
|  | result(0,0) = log(A(0,0)); | 
|  | else if (A.rows() == 2) | 
|  | matrix_log_compute_2x2(A, result); | 
|  | else | 
|  | matrix_log_compute_big(A, result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | } // end of namespace internal | 
|  |  | 
|  | /** \ingroup MatrixFunctions_Module | 
|  | * | 
|  | * \brief Proxy for the matrix logarithm of some matrix (expression). | 
|  | * | 
|  | * \tparam Derived  Type of the argument to the matrix function. | 
|  | * | 
|  | * This class holds the argument to the matrix function until it is | 
|  | * assigned or evaluated for some other reason (so the argument | 
|  | * should not be changed in the meantime). It is the return type of | 
|  | * MatrixBase::log() and most of the time this is the only way it | 
|  | * is used. | 
|  | */ | 
|  | template<typename Derived> class MatrixLogarithmReturnValue | 
|  | : public ReturnByValue<MatrixLogarithmReturnValue<Derived> > | 
|  | { | 
|  | public: | 
|  | typedef typename Derived::Scalar Scalar; | 
|  | typedef typename Derived::Index Index; | 
|  |  | 
|  | protected: | 
|  | typedef typename internal::ref_selector<Derived>::type DerivedNested; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** \brief Constructor. | 
|  | * | 
|  | * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm. | 
|  | */ | 
|  | explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { } | 
|  |  | 
|  | /** \brief Compute the matrix logarithm. | 
|  | * | 
|  | * \param[out]  result  Logarithm of \c A, where \c A is as specified in the constructor. | 
|  | */ | 
|  | template <typename ResultType> | 
|  | inline void evalTo(ResultType& result) const | 
|  | { | 
|  | typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType; | 
|  | typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean; | 
|  | typedef internal::traits<DerivedEvalTypeClean> Traits; | 
|  | typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; | 
|  | typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType; | 
|  | typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType; | 
|  | AtomicType atomic; | 
|  |  | 
|  | internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result); | 
|  | } | 
|  |  | 
|  | Index rows() const { return m_A.rows(); } | 
|  | Index cols() const { return m_A.cols(); } | 
|  |  | 
|  | private: | 
|  | const DerivedNested m_A; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | template<typename Derived> | 
|  | struct traits<MatrixLogarithmReturnValue<Derived> > | 
|  | { | 
|  | typedef typename Derived::PlainObject ReturnType; | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | /********** MatrixBase method **********/ | 
|  |  | 
|  |  | 
|  | template <typename Derived> | 
|  | const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const | 
|  | { | 
|  | eigen_assert(rows() == cols()); | 
|  | return MatrixLogarithmReturnValue<Derived>(derived()); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_MATRIX_LOGARITHM |