|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_MATRIX_SQUARE_ROOT | 
|  | #define EIGEN_MATRIX_SQUARE_ROOT | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // pre:  T.block(i,i,2,2) has complex conjugate eigenvalues | 
|  | // post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2) | 
|  | template <typename MatrixType, typename ResultType> | 
|  | void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, Index i, ResultType& sqrtT) | 
|  | { | 
|  | // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere | 
|  | //       in EigenSolver. If we expose it, we could call it directly from here. | 
|  | typedef typename traits<MatrixType>::Scalar Scalar; | 
|  | Matrix<Scalar,2,2> block = T.template block<2,2>(i,i); | 
|  | EigenSolver<Matrix<Scalar,2,2> > es(block); | 
|  | sqrtT.template block<2,2>(i,i) | 
|  | = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real(); | 
|  | } | 
|  |  | 
|  | // pre:  block structure of T is such that (i,j) is a 1x1 block, | 
|  | //       all blocks of sqrtT to left of and below (i,j) are correct | 
|  | // post: sqrtT(i,j) has the correct value | 
|  | template <typename MatrixType, typename ResultType> | 
|  | void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT) | 
|  | { | 
|  | typedef typename traits<MatrixType>::Scalar Scalar; | 
|  | Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value(); | 
|  | sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j)); | 
|  | } | 
|  |  | 
|  | // similar to compute1x1offDiagonalBlock() | 
|  | template <typename MatrixType, typename ResultType> | 
|  | void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT) | 
|  | { | 
|  | typedef typename traits<MatrixType>::Scalar Scalar; | 
|  | Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j); | 
|  | if (j-i > 1) | 
|  | rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2); | 
|  | Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity(); | 
|  | A += sqrtT.template block<2,2>(j,j).transpose(); | 
|  | sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose()); | 
|  | } | 
|  |  | 
|  | // similar to compute1x1offDiagonalBlock() | 
|  | template <typename MatrixType, typename ResultType> | 
|  | void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT) | 
|  | { | 
|  | typedef typename traits<MatrixType>::Scalar Scalar; | 
|  | Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j); | 
|  | if (j-i > 2) | 
|  | rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1); | 
|  | Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity(); | 
|  | A += sqrtT.template block<2,2>(i,i); | 
|  | sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs); | 
|  | } | 
|  |  | 
|  | // solves the equation A X + X B = C where all matrices are 2-by-2 | 
|  | template <typename MatrixType> | 
|  | void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C) | 
|  | { | 
|  | typedef typename traits<MatrixType>::Scalar Scalar; | 
|  | Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero(); | 
|  | coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0); | 
|  | coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1); | 
|  | coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0); | 
|  | coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1); | 
|  | coeffMatrix.coeffRef(0,1) = B.coeff(1,0); | 
|  | coeffMatrix.coeffRef(0,2) = A.coeff(0,1); | 
|  | coeffMatrix.coeffRef(1,0) = B.coeff(0,1); | 
|  | coeffMatrix.coeffRef(1,3) = A.coeff(0,1); | 
|  | coeffMatrix.coeffRef(2,0) = A.coeff(1,0); | 
|  | coeffMatrix.coeffRef(2,3) = B.coeff(1,0); | 
|  | coeffMatrix.coeffRef(3,1) = A.coeff(1,0); | 
|  | coeffMatrix.coeffRef(3,2) = B.coeff(0,1); | 
|  |  | 
|  | Matrix<Scalar,4,1> rhs; | 
|  | rhs.coeffRef(0) = C.coeff(0,0); | 
|  | rhs.coeffRef(1) = C.coeff(0,1); | 
|  | rhs.coeffRef(2) = C.coeff(1,0); | 
|  | rhs.coeffRef(3) = C.coeff(1,1); | 
|  |  | 
|  | Matrix<Scalar,4,1> result; | 
|  | result = coeffMatrix.fullPivLu().solve(rhs); | 
|  |  | 
|  | X.coeffRef(0,0) = result.coeff(0); | 
|  | X.coeffRef(0,1) = result.coeff(1); | 
|  | X.coeffRef(1,0) = result.coeff(2); | 
|  | X.coeffRef(1,1) = result.coeff(3); | 
|  | } | 
|  |  | 
|  | // similar to compute1x1offDiagonalBlock() | 
|  | template <typename MatrixType, typename ResultType> | 
|  | void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT) | 
|  | { | 
|  | typedef typename traits<MatrixType>::Scalar Scalar; | 
|  | Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i); | 
|  | Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j); | 
|  | Matrix<Scalar,2,2> C = T.template block<2,2>(i,j); | 
|  | if (j-i > 2) | 
|  | C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2); | 
|  | Matrix<Scalar,2,2> X; | 
|  | matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C); | 
|  | sqrtT.template block<2,2>(i,j) = X; | 
|  | } | 
|  |  | 
|  | // pre:  T is quasi-upper-triangular and sqrtT is a zero matrix of the same size | 
|  | // post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T | 
|  | template <typename MatrixType, typename ResultType> | 
|  | void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT) | 
|  | { | 
|  | using std::sqrt; | 
|  | const Index size = T.rows(); | 
|  | for (Index i = 0; i < size; i++) { | 
|  | if (i == size - 1 || T.coeff(i+1, i) == 0) { | 
|  | eigen_assert(T(i,i) >= 0); | 
|  | sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i)); | 
|  | } | 
|  | else { | 
|  | matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT); | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // pre:  T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T. | 
|  | // post: sqrtT is the square root of T. | 
|  | template <typename MatrixType, typename ResultType> | 
|  | void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT) | 
|  | { | 
|  | const Index size = T.rows(); | 
|  | for (Index j = 1; j < size; j++) { | 
|  | if (T.coeff(j, j-1) != 0)  // if T(j-1:j, j-1:j) is a 2-by-2 block | 
|  | continue; | 
|  | for (Index i = j-1; i >= 0; i--) { | 
|  | if (i > 0 && T.coeff(i, i-1) != 0)  // if T(i-1:i, i-1:i) is a 2-by-2 block | 
|  | continue; | 
|  | bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0); | 
|  | bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0); | 
|  | if (iBlockIs2x2 && jBlockIs2x2) | 
|  | matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT); | 
|  | else if (iBlockIs2x2 && !jBlockIs2x2) | 
|  | matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT); | 
|  | else if (!iBlockIs2x2 && jBlockIs2x2) | 
|  | matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT); | 
|  | else if (!iBlockIs2x2 && !jBlockIs2x2) | 
|  | matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end of namespace internal | 
|  |  | 
|  | /** \ingroup MatrixFunctions_Module | 
|  | * \brief Compute matrix square root of quasi-triangular matrix. | 
|  | * | 
|  | * \tparam  MatrixType  type of \p arg, the argument of matrix square root, | 
|  | *                      expected to be an instantiation of the Matrix class template. | 
|  | * \tparam  ResultType  type of \p result, where result is to be stored. | 
|  | * \param[in]  arg      argument of matrix square root. | 
|  | * \param[out] result   matrix square root of upper Hessenberg part of \p arg. | 
|  | * | 
|  | * This function computes the square root of the upper quasi-triangular matrix stored in the upper | 
|  | * Hessenberg part of \p arg.  Only the upper Hessenberg part of \p result is updated, the rest is | 
|  | * not touched.  See MatrixBase::sqrt() for details on how this computation is implemented. | 
|  | * | 
|  | * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular | 
|  | */ | 
|  | template <typename MatrixType, typename ResultType> | 
|  | void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result) | 
|  | { | 
|  | eigen_assert(arg.rows() == arg.cols()); | 
|  | result.resize(arg.rows(), arg.cols()); | 
|  | internal::matrix_sqrt_quasi_triangular_diagonal(arg, result); | 
|  | internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** \ingroup MatrixFunctions_Module | 
|  | * \brief Compute matrix square root of triangular matrix. | 
|  | * | 
|  | * \tparam  MatrixType  type of \p arg, the argument of matrix square root, | 
|  | *                      expected to be an instantiation of the Matrix class template. | 
|  | * \tparam  ResultType  type of \p result, where result is to be stored. | 
|  | * \param[in]  arg      argument of matrix square root. | 
|  | * \param[out] result   matrix square root of upper triangular part of \p arg. | 
|  | * | 
|  | * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not | 
|  | * touched.  See MatrixBase::sqrt() for details on how this computation is implemented. | 
|  | * | 
|  | * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular | 
|  | */ | 
|  | template <typename MatrixType, typename ResultType> | 
|  | void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result) | 
|  | { | 
|  | using std::sqrt; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | eigen_assert(arg.rows() == arg.cols()); | 
|  |  | 
|  | // Compute square root of arg and store it in upper triangular part of result | 
|  | // This uses that the square root of triangular matrices can be computed directly. | 
|  | result.resize(arg.rows(), arg.cols()); | 
|  | for (Index i = 0; i < arg.rows(); i++) { | 
|  | result.coeffRef(i,i) = sqrt(arg.coeff(i,i)); | 
|  | } | 
|  | for (Index j = 1; j < arg.cols(); j++) { | 
|  | for (Index i = j-1; i >= 0; i--) { | 
|  | // if i = j-1, then segment has length 0 so tmp = 0 | 
|  | Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value(); | 
|  | // denominator may be zero if original matrix is singular | 
|  | result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \ingroup MatrixFunctions_Module | 
|  | * \brief Helper struct for computing matrix square roots of general matrices. | 
|  | * \tparam  MatrixType  type of the argument of the matrix square root, | 
|  | *                      expected to be an instantiation of the Matrix class template. | 
|  | * | 
|  | * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt() | 
|  | */ | 
|  | template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> | 
|  | struct matrix_sqrt_compute | 
|  | { | 
|  | /** \brief Compute the matrix square root | 
|  | * | 
|  | * \param[in]  arg     matrix whose square root is to be computed. | 
|  | * \param[out] result  square root of \p arg. | 
|  | * | 
|  | * See MatrixBase::sqrt() for details on how this computation is implemented. | 
|  | */ | 
|  | template <typename ResultType> static void run(const MatrixType &arg, ResultType &result); | 
|  | }; | 
|  |  | 
|  |  | 
|  | // ********** Partial specialization for real matrices ********** | 
|  |  | 
|  | template <typename MatrixType> | 
|  | struct matrix_sqrt_compute<MatrixType, 0> | 
|  | { | 
|  | template <typename ResultType> | 
|  | static void run(const MatrixType &arg, ResultType &result) | 
|  | { | 
|  | eigen_assert(arg.rows() == arg.cols()); | 
|  |  | 
|  | // Compute Schur decomposition of arg | 
|  | const RealSchur<MatrixType> schurOfA(arg); | 
|  | const MatrixType& T = schurOfA.matrixT(); | 
|  | const MatrixType& U = schurOfA.matrixU(); | 
|  |  | 
|  | // Compute square root of T | 
|  | MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols()); | 
|  | matrix_sqrt_quasi_triangular(T, sqrtT); | 
|  |  | 
|  | // Compute square root of arg | 
|  | result = U * sqrtT * U.adjoint(); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | // ********** Partial specialization for complex matrices ********** | 
|  |  | 
|  | template <typename MatrixType> | 
|  | struct matrix_sqrt_compute<MatrixType, 1> | 
|  | { | 
|  | template <typename ResultType> | 
|  | static void run(const MatrixType &arg, ResultType &result) | 
|  | { | 
|  | eigen_assert(arg.rows() == arg.cols()); | 
|  |  | 
|  | // Compute Schur decomposition of arg | 
|  | const ComplexSchur<MatrixType> schurOfA(arg); | 
|  | const MatrixType& T = schurOfA.matrixT(); | 
|  | const MatrixType& U = schurOfA.matrixU(); | 
|  |  | 
|  | // Compute square root of T | 
|  | MatrixType sqrtT; | 
|  | matrix_sqrt_triangular(T, sqrtT); | 
|  |  | 
|  | // Compute square root of arg | 
|  | result = U * (sqrtT.template triangularView<Upper>() * U.adjoint()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \ingroup MatrixFunctions_Module | 
|  | * | 
|  | * \brief Proxy for the matrix square root of some matrix (expression). | 
|  | * | 
|  | * \tparam Derived  Type of the argument to the matrix square root. | 
|  | * | 
|  | * This class holds the argument to the matrix square root until it | 
|  | * is assigned or evaluated for some other reason (so the argument | 
|  | * should not be changed in the meantime). It is the return type of | 
|  | * MatrixBase::sqrt() and most of the time this is the only way it is | 
|  | * used. | 
|  | */ | 
|  | template<typename Derived> class MatrixSquareRootReturnValue | 
|  | : public ReturnByValue<MatrixSquareRootReturnValue<Derived> > | 
|  | { | 
|  | protected: | 
|  | typedef typename internal::ref_selector<Derived>::type DerivedNested; | 
|  |  | 
|  | public: | 
|  | /** \brief Constructor. | 
|  | * | 
|  | * \param[in]  src  %Matrix (expression) forming the argument of the | 
|  | * matrix square root. | 
|  | */ | 
|  | explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { } | 
|  |  | 
|  | /** \brief Compute the matrix square root. | 
|  | * | 
|  | * \param[out]  result  the matrix square root of \p src in the | 
|  | * constructor. | 
|  | */ | 
|  | template <typename ResultType> | 
|  | inline void evalTo(ResultType& result) const | 
|  | { | 
|  | typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType; | 
|  | typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean; | 
|  | DerivedEvalType tmp(m_src); | 
|  | internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result); | 
|  | } | 
|  |  | 
|  | Index rows() const { return m_src.rows(); } | 
|  | Index cols() const { return m_src.cols(); } | 
|  |  | 
|  | protected: | 
|  | const DerivedNested m_src; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | template<typename Derived> | 
|  | struct traits<MatrixSquareRootReturnValue<Derived> > | 
|  | { | 
|  | typedef typename Derived::PlainObject ReturnType; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template <typename Derived> | 
|  | const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const | 
|  | { | 
|  | eigen_assert(rows() == cols()); | 
|  | return MatrixSquareRootReturnValue<Derived>(derived()); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_MATRIX_FUNCTION |