| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_MEMORY_H |
| #define EIGEN_MEMORY_H |
| |
| #ifdef __linux |
| // it seems we cannot assume posix_memalign is defined in the stdlib header |
| extern "C" int posix_memalign (void **, size_t, size_t) throw (); |
| #endif |
| |
| struct ei_byte_forcing_aligned_malloc |
| { |
| unsigned char c; // sizeof must be 1. |
| }; |
| template<typename T> struct ei_force_aligned_malloc { enum { ret = 0 }; }; |
| template<> struct ei_force_aligned_malloc<ei_byte_forcing_aligned_malloc> { enum { ret = 1 }; }; |
| |
| /** \internal allocates \a size * sizeof(\a T) bytes. If vectorization is enabled and T is such that a packet |
| * containts more than one T, then the returned pointer is guaranteed to have 16 bytes alignment. |
| * On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown. |
| */ |
| template<typename T> |
| inline T* ei_aligned_malloc(size_t size) |
| { |
| if(ei_packet_traits<T>::size>1 || ei_force_aligned_malloc<T>::ret) |
| { |
| void *void_result; |
| #ifdef __linux |
| #ifdef EIGEN_EXCEPTIONS |
| const int failed = |
| #endif |
| posix_memalign(&void_result, 16, size*sizeof(T)); |
| #else |
| #ifdef _MSC_VER |
| void_result = _aligned_malloc(size*sizeof(T), 16); |
| #elif defined(__APPLE__) |
| void_result = malloc(size*sizeof(T)); // Apple's malloc() already returns aligned ptrs |
| #else |
| void_result = _mm_malloc(size*sizeof(T), 16); |
| #endif |
| #ifdef EIGEN_EXCEPTIONS |
| const int failed = (void_result == 0); |
| #endif |
| #endif |
| #ifdef EIGEN_EXCEPTIONS |
| if(failed) |
| throw std::bad_alloc(); |
| #endif |
| // if the user uses Eigen on some fancy scalar type such as multiple-precision numbers, |
| // and this type has a custom operator new, then we want to honor this operator new! |
| // so when we use C functions to allocate memory, we must be careful to call manually the constructor using |
| // the special placement-new syntax. |
| return ::new(void_result) T[size]; |
| } |
| else |
| return new T[size]; // here we really want a new, not a malloc. Justification: if the user uses Eigen on |
| // some fancy scalar type such as multiple-precision numbers, and this type has a custom operator new, |
| // then we want to honor this operator new! Anyway this type won't have vectorization so the vectorizing path |
| // is irrelevant here. Yes, we should say somewhere in the docs that if the user uses a custom scalar type then |
| // he can't have both vectorization and a custom operator new on his scalar type. |
| } |
| |
| /** \internal free memory allocated with ei_aligned_malloc |
| * The \a size parameter is used to determine on how many elements to call the destructor. If you don't |
| * want any destructor to be called, just pass 0. |
| */ |
| template<typename T> |
| inline void ei_aligned_free(T* ptr, size_t size) |
| { |
| if (ei_packet_traits<T>::size>1 || ei_force_aligned_malloc<T>::ret) |
| { |
| // need to call manually the dtor in case T is some user-defined fancy numeric type. |
| // always destruct an array starting from the end. |
| while(size) ptr[--size].~T(); |
| #if defined(__linux) |
| free(ptr); |
| #elif defined(__APPLE__) |
| free(ptr); |
| #elif defined(_MSC_VER) |
| _aligned_free(ptr); |
| #else |
| _mm_free(ptr); |
| #endif |
| } |
| else |
| delete[] ptr; |
| } |
| |
| /** \internal \returns the number of elements which have to be skipped such that data are 16 bytes aligned */ |
| template<typename Scalar> |
| inline static int ei_alignmentOffset(const Scalar* ptr, int maxOffset) |
| { |
| typedef typename ei_packet_traits<Scalar>::type Packet; |
| const int PacketSize = ei_packet_traits<Scalar>::size; |
| const int PacketAlignedMask = PacketSize-1; |
| const bool Vectorized = PacketSize>1; |
| return Vectorized |
| ? std::min<int>( (PacketSize - (int((size_t(ptr)/sizeof(Scalar))) & PacketAlignedMask)) |
| & PacketAlignedMask, maxOffset) |
| : 0; |
| } |
| |
| /** \internal |
| * ei_aligned_stack_alloc(TYPE,SIZE) allocates an aligned buffer of sizeof(TYPE)*SIZE bytes |
| * on the stack if sizeof(TYPE)*SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT. |
| * Otherwise the memory is allocated on the heap. |
| * Data allocated with ei_aligned_stack_alloc \b must be freed by calling ei_aligned_stack_free(PTR,TYPE,SIZE). |
| * \code |
| * float * data = ei_aligned_stack_alloc(float,array.size()); |
| * // ... |
| * ei_aligned_stack_free(data,float,array.size()); |
| * \endcode |
| */ |
| #ifdef __linux__ |
| #define ei_aligned_stack_alloc(TYPE,SIZE) ((sizeof(TYPE)*(SIZE)>EIGEN_STACK_ALLOCATION_LIMIT) \ |
| ? ei_aligned_malloc<TYPE>(SIZE) \ |
| : (TYPE*)alloca(sizeof(TYPE)*(SIZE))) |
| #define ei_aligned_stack_free(PTR,TYPE,SIZE) if (sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) ei_aligned_free(PTR,SIZE) |
| #else |
| #define ei_aligned_stack_alloc(TYPE,SIZE) ei_aligned_malloc<TYPE>(SIZE) |
| #define ei_aligned_stack_free(PTR,TYPE,SIZE) ei_aligned_free(PTR,SIZE) |
| #endif |
| |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF__INTERNAL(NeedsToAlign, TYPENAME) \ |
| typedef TYPENAME Eigen::ei_meta_if<(NeedsToAlign), \ |
| Eigen::ei_byte_forcing_aligned_malloc, \ |
| char \ |
| >::ret Eigen_ByteAlignedAsNeeded; \ |
| void *operator new(size_t size) throw() { \ |
| return Eigen::ei_aligned_malloc<Eigen_ByteAlignedAsNeeded>(size); \ |
| } \ |
| void *operator new(size_t, void *ptr) throw() { \ |
| return ptr; \ |
| } \ |
| void *operator new[](size_t size) throw() { \ |
| return Eigen::ei_aligned_malloc<Eigen_ByteAlignedAsNeeded>(size); \ |
| } \ |
| void *operator new[](size_t, void *ptr) throw() { \ |
| return ptr; \ |
| } \ |
| void operator delete(void * ptr) { Eigen::ei_aligned_free(static_cast<Eigen_ByteAlignedAsNeeded *>(ptr), 0); } \ |
| void operator delete[](void * ptr) { Eigen::ei_aligned_free(static_cast<Eigen_ByteAlignedAsNeeded *>(ptr), 0); } |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW \ |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF__INTERNAL(true, ) |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)\ |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF__INTERNAL(NeedsToAlign, typename) |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE(Type,Size)\ |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(((Size)!=Eigen::Dynamic) && ((sizeof(Type)*(Size))%16==0)) |
| |
| |
| /** \class WithAlignedOperatorNew |
| * |
| * \brief Enforces instances of inherited classes to be 16 bytes aligned when allocated with operator new |
| * |
| * When Eigen's explicit vectorization is enabled, Eigen assumes that some fixed sizes types are aligned |
| * on a 16 bytes boundary. Those include all Matrix types having a sizeof multiple of 16 bytes, e.g.: |
| * - Vector2d, Vector4f, Vector4i, Vector4d, |
| * - Matrix2d, Matrix4f, Matrix4i, Matrix4d, |
| * - etc. |
| * When an object is statically allocated, the compiler will automatically and always enforces 16 bytes |
| * alignment of the data when needed. However some troubles might appear when data are dynamically allocated. |
| * Let's pick an example: |
| * \code |
| * struct Foo { |
| * char dummy; |
| * Vector4f some_vector; |
| * }; |
| * Foo obj1; // static allocation |
| * obj1.some_vector = Vector4f(..); // => OK |
| * |
| * Foo *pObj2 = new Foo; // dynamic allocation |
| * pObj2->some_vector = Vector4f(..); // => !! might segfault !! |
| * \endcode |
| * Here, the problem is that operator new is not aware of the compile time alignment requirement of the |
| * type Vector4f (and hence of the type Foo). Therefore "new Foo" does not necessarily returns a 16 bytes |
| * aligned pointer. The purpose of the class WithAlignedOperatorNew is exactly to overcome this issue by |
| * overloading the operator new to return aligned data when the vectorization is enabled. |
| * Here is a similar safe example: |
| * \code |
| * struct Foo : public WithAlignedOperatorNew { |
| * char dummy; |
| * Vector4f some_vector; |
| * }; |
| * Foo *pObj2 = new Foo; // dynamic allocation |
| * pObj2->some_vector = Vector4f(..); // => SAFE ! |
| * \endcode |
| * |
| * \sa class ei_new_allocator |
| */ |
| struct WithAlignedOperatorNew |
| { |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| }; |
| |
| /** \class ei_new_allocator |
| * |
| * \brief stl compatible allocator to use with with fixed-size vector and matrix types |
| * |
| * STL allocator simply wrapping operators new[] and delete[]. Unlike GCC's default new_allocator, |
| * ei_new_allocator call operator new on the type \a T and not the general new operator ignoring |
| * overloaded version of operator new. |
| * |
| * Example: |
| * \code |
| * // Vector4f requires 16 bytes alignment: |
| * std::vector<Vector4f,ei_new_allocator<Vector4f> > dataVec4; |
| * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: |
| * std::vector<Vector3f> dataVec3; |
| * |
| * struct Foo : WithAlignedOperatorNew { |
| * char dummy; |
| * Vector4f some_vector; |
| * }; |
| * std::vector<Foo,ei_new_allocator<Foo> > dataFoo; |
| * \endcode |
| * |
| * \sa class WithAlignedOperatorNew |
| */ |
| template<typename T> class ei_new_allocator |
| { |
| public: |
| typedef T value_type; |
| typedef T* pointer; |
| typedef const T* const_pointer; |
| typedef T& reference; |
| typedef const T& const_reference; |
| |
| template<typename OtherType> |
| struct rebind |
| { typedef ei_new_allocator<OtherType> other; }; |
| |
| T* address(T& ref) const { return &ref; } |
| const T* address(const T& ref) const { return &ref; } |
| T* allocate(size_t size, const void* = 0) { return new T[size]; } |
| void deallocate(T* ptr, size_t) { delete[] ptr; } |
| size_t max_size() const { return size_t(-1) / sizeof(T); } |
| // FIXME I'm note sure about this construction... |
| void construct(T* ptr, const T& refObj) { ::new(ptr) T(refObj); } |
| void destroy(T* ptr) { ptr->~T(); } |
| }; |
| |
| #endif // EIGEN_MEMORY_H |