blob: 88914af3a72d462170c6d13637f314431e973ddc [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_QR_H
#define EIGEN_QR_H
/** \ingroup QR_Module
* \nonstableyet
*
* \class QR
*
* \brief QR decomposition of a matrix
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a QR decomposition using Householder transformations. The result is
* stored in a compact way compatible with LAPACK.
*
* \sa MatrixBase::qr()
*/
template<typename MatrixType> class QR
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
QR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs(matrix.cols())
{
_compute(matrix);
}
/** \returns whether or not the matrix is of full rank */
bool isFullRank() const { return ei_isMuchSmallerThan(m_hCoeffs.cwise().abs().minCoeff(), Scalar(1)); }
/** \returns a read-only expression of the matrix R of the actual the QR decomposition */
const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
matrixR(void) const
{
int cols = m_qr.cols();
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
}
MatrixType matrixQ(void) const;
private:
void _compute(const MatrixType& matrix);
protected:
MatrixType m_qr;
VectorType m_hCoeffs;
};
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
void QR<MatrixType>::_compute(const MatrixType& matrix)
{
m_qr = matrix;
int rows = matrix.rows();
int cols = matrix.cols();
for (int k = 0; k < cols; ++k)
{
int remainingSize = rows-k;
RealScalar beta;
Scalar v0 = m_qr.col(k).coeff(k);
if (remainingSize==1)
{
if (NumTraits<Scalar>::IsComplex)
{
// Householder transformation on the remaining single scalar
beta = ei_abs(v0);
if (ei_real(v0)>0)
beta = -beta;
m_qr.coeffRef(k,k) = beta;
m_hCoeffs.coeffRef(k) = (beta - v0) / beta;
}
else
{
m_hCoeffs.coeffRef(k) = 0;
}
}
else if ( (!ei_isMuchSmallerThan(beta=m_qr.col(k).end(remainingSize-1).squaredNorm(),static_cast<Scalar>(1))) || ei_imag(v0)==0 )
{
// form k-th Householder vector
beta = ei_sqrt(ei_abs2(v0)+beta);
if (ei_real(v0)>=0.)
beta = -beta;
m_qr.col(k).end(remainingSize-1) /= v0-beta;
m_qr.coeffRef(k,k) = beta;
Scalar h = m_hCoeffs.coeffRef(k) = (beta - v0) / beta;
// apply the Householder transformation (I - h v v') to remaining columns, i.e.,
// R <- (I - h v v') * R where v = [1,m_qr(k+1,k), m_qr(k+2,k), ...]
int remainingCols = cols - k -1;
if (remainingCols>0)
{
m_qr.coeffRef(k,k) = Scalar(1);
m_qr.corner(BottomRight, remainingSize, remainingCols) -= ei_conj(h) * m_qr.col(k).end(remainingSize)
* (m_qr.col(k).end(remainingSize).adjoint() * m_qr.corner(BottomRight, remainingSize, remainingCols));
m_qr.coeffRef(k,k) = beta;
}
}
else
{
m_hCoeffs.coeffRef(k) = 0;
}
}
}
/** \returns the matrix Q */
template<typename MatrixType>
MatrixType QR<MatrixType>::matrixQ(void) const
{
// compute the product Q_0 Q_1 ... Q_n-1,
// where Q_k is the k-th Householder transformation I - h_k v_k v_k'
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
int rows = m_qr.rows();
int cols = m_qr.cols();
MatrixType res = MatrixType::Identity(rows, cols);
for (int k = cols-1; k >= 0; k--)
{
// to make easier the computation of the transformation, let's temporarily
// overwrite m_qr(k,k) such that the end of m_qr.col(k) is exactly our Householder vector.
Scalar beta = m_qr.coeff(k,k);
m_qr.const_cast_derived().coeffRef(k,k) = 1;
int endLength = rows-k;
res.corner(BottomRight,endLength, cols-k) -= ((m_hCoeffs.coeff(k) * m_qr.col(k).end(endLength))
* (m_qr.col(k).end(endLength).adjoint() * res.corner(BottomRight,endLength, cols-k)).lazy()).lazy();
m_qr.const_cast_derived().coeffRef(k,k) = beta;
}
return res;
}
#endif // EIGEN_HIDE_HEAVY_CODE
/** \return the QR decomposition of \c *this.
*
* \sa class QR
*/
template<typename Derived>
const QR<typename MatrixBase<Derived>::PlainMatrixType>
MatrixBase<Derived>::qr() const
{
return QR<PlainMatrixType>(eval());
}
#endif // EIGEN_QR_H