| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_TRIDIAGONALIZATION_H |
| #define EIGEN_TRIDIAGONALIZATION_H |
| |
| /** \ingroup QR_Module |
| * \nonstableyet |
| * |
| * \class Tridiagonalization |
| * |
| * \brief Trigiagonal decomposition of a selfadjoint matrix |
| * |
| * \param MatrixType the type of the matrix of which we are performing the tridiagonalization |
| * |
| * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: |
| * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. |
| * |
| * \sa MatrixBase::tridiagonalize() |
| */ |
| template<typename _MatrixType> class Tridiagonalization |
| { |
| public: |
| |
| typedef _MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename ei_packet_traits<Scalar>::type Packet; |
| |
| enum { |
| Size = MatrixType::RowsAtCompileTime, |
| SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic |
| ? Dynamic |
| : MatrixType::RowsAtCompileTime-1, |
| PacketSize = ei_packet_traits<Scalar>::size |
| }; |
| |
| typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType; |
| typedef Matrix<RealScalar, Size, 1> DiagonalType; |
| typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType; |
| |
| typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalReturnType; |
| |
| typedef typename NestByValue<DiagonalCoeffs< |
| NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType; |
| |
| /** This constructor initializes a Tridiagonalization object for |
| * further use with Tridiagonalization::compute() |
| */ |
| Tridiagonalization(int size = Size==Dynamic ? 2 : Size) |
| : m_matrix(size,size), m_hCoeffs(size-1) |
| {} |
| |
| Tridiagonalization(const MatrixType& matrix) |
| : m_matrix(matrix), |
| m_hCoeffs(matrix.cols()-1) |
| { |
| _compute(m_matrix, m_hCoeffs); |
| } |
| |
| /** Computes or re-compute the tridiagonalization for the matrix \a matrix. |
| * |
| * This method allows to re-use the allocated data. |
| */ |
| void compute(const MatrixType& matrix) |
| { |
| m_matrix = matrix; |
| m_hCoeffs.resize(matrix.rows()-1, 1); |
| _compute(m_matrix, m_hCoeffs); |
| } |
| |
| /** \returns the householder coefficients allowing to |
| * reconstruct the matrix Q from the packed data. |
| * |
| * \sa packedMatrix() |
| */ |
| inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; } |
| |
| /** \returns the internal result of the decomposition. |
| * |
| * The returned matrix contains the following information: |
| * - the strict upper part is equal to the input matrix A |
| * - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real). |
| * - the rest of the lower part contains the Householder vectors that, combined with |
| * Householder coefficients returned by householderCoefficients(), |
| * allows to reconstruct the matrix Q as follow: |
| * Q = H_{N-1} ... H_1 H_0 |
| * where the matrices H are the Householder transformations: |
| * H_i = (I - h_i * v_i * v_i') |
| * where h_i == householderCoefficients()[i] and v_i is a Householder vector: |
| * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ] |
| * |
| * See LAPACK for further details on this packed storage. |
| */ |
| inline const MatrixType& packedMatrix(void) const { return m_matrix; } |
| |
| MatrixType matrixQ(void) const; |
| MatrixType matrixT(void) const; |
| const DiagonalReturnType diagonal(void) const; |
| const SubDiagonalReturnType subDiagonal(void) const; |
| |
| static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); |
| |
| private: |
| |
| static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs); |
| |
| static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); |
| |
| protected: |
| MatrixType m_matrix; |
| CoeffVectorType m_hCoeffs; |
| }; |
| |
| /** \returns an expression of the diagonal vector */ |
| template<typename MatrixType> |
| const typename Tridiagonalization<MatrixType>::DiagonalReturnType |
| Tridiagonalization<MatrixType>::diagonal(void) const |
| { |
| return m_matrix.diagonal().nestByValue().real(); |
| } |
| |
| /** \returns an expression of the sub-diagonal vector */ |
| template<typename MatrixType> |
| const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType |
| Tridiagonalization<MatrixType>::subDiagonal(void) const |
| { |
| int n = m_matrix.rows(); |
| return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1) |
| .nestByValue().diagonal().nestByValue().real(); |
| } |
| |
| /** constructs and returns the tridiagonal matrix T. |
| * Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix. |
| * Therefore, it might be often sufficient to directly use the packed matrix, or the vector |
| * expressions returned by diagonal() and subDiagonal() instead of creating a new matrix. |
| */ |
| template<typename MatrixType> |
| typename Tridiagonalization<MatrixType>::MatrixType |
| Tridiagonalization<MatrixType>::matrixT(void) const |
| { |
| // FIXME should this function (and other similar ones) rather take a matrix as argument |
| // and fill it ? (to avoid temporaries) |
| int n = m_matrix.rows(); |
| MatrixType matT = m_matrix; |
| matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().template cast<Scalar>().conjugate(); |
| if (n>2) |
| { |
| matT.corner(TopRight,n-2, n-2).template part<UpperTriangular>().setZero(); |
| matT.corner(BottomLeft,n-2, n-2).template part<LowerTriangular>().setZero(); |
| } |
| return matT; |
| } |
| |
| #ifndef EIGEN_HIDE_HEAVY_CODE |
| |
| /** \internal |
| * Performs a tridiagonal decomposition of \a matA in place. |
| * |
| * \param matA the input selfadjoint matrix |
| * \param hCoeffs returned Householder coefficients |
| * |
| * The result is written in the lower triangular part of \a matA. |
| * |
| * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. |
| * |
| * \sa packedMatrix() |
| */ |
| template<typename MatrixType> |
| void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs) |
| { |
| assert(matA.rows()==matA.cols()); |
| int n = matA.rows(); |
| // std::cerr << matA << "\n\n"; |
| for (int i = 0; i<n-2; ++i) |
| { |
| // let's consider the vector v = i-th column starting at position i+1 |
| |
| // start of the householder transformation |
| // squared norm of the vector v skipping the first element |
| RealScalar v1norm2 = matA.col(i).end(n-(i+2)).squaredNorm(); |
| |
| if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1))) |
| { |
| hCoeffs.coeffRef(i) = 0.; |
| } |
| else |
| { |
| Scalar v0 = matA.col(i).coeff(i+1); |
| RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2); |
| if (ei_real(v0)>=0.) |
| beta = -beta; |
| matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta)); |
| matA.col(i).coeffRef(i+1) = beta; |
| Scalar h = (beta - v0) / beta; |
| // end of the householder transformation |
| |
| // Apply similarity transformation to remaining columns, |
| // i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1) |
| |
| matA.col(i).coeffRef(i+1) = 1; |
| |
| /* This is the initial algorithm which minimize operation counts and maximize |
| * the use of Eigen's expression. Unfortunately, the first matrix-vector product |
| * using Part<LowerTriangular|Selfadjoint> is very very slow */ |
| #ifdef EIGEN_NEVER_DEFINED |
| // matrix - vector product |
| hCoeffs.end(n-i-1) = (matA.corner(BottomRight,n-i-1,n-i-1).template part<LowerTriangular|SelfAdjoint>() |
| * (h * matA.col(i).end(n-i-1))).lazy(); |
| // simple axpy |
| hCoeffs.end(n-i-1) += (h * Scalar(-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1))) |
| * matA.col(i).end(n-i-1); |
| // rank-2 update |
| //Block<MatrixType,Dynamic,1> B(matA,i+1,i,n-i-1,1); |
| matA.corner(BottomRight,n-i-1,n-i-1).template part<LowerTriangular>() -= |
| (matA.col(i).end(n-i-1) * hCoeffs.end(n-i-1).adjoint()).lazy() |
| + (hCoeffs.end(n-i-1) * matA.col(i).end(n-i-1).adjoint()).lazy(); |
| #endif |
| /* end initial algorithm */ |
| |
| /* If we still want to minimize operation count (i.e., perform operation on the lower part only) |
| * then we could provide the following algorithm for selfadjoint - vector product. However, a full |
| * matrix-vector product is still faster (at least for dynamic size, and not too small, did not check |
| * small matrices). The algo performs block matrix-vector and transposed matrix vector products. */ |
| #ifdef EIGEN_NEVER_DEFINED |
| int n4 = (std::max(0,n-4)/4)*4; |
| hCoeffs.end(n-i-1).setZero(); |
| for (int b=i+1; b<n4; b+=4) |
| { |
| // the ?x4 part: |
| hCoeffs.end(b-4) += |
| Block<MatrixType,Dynamic,4>(matA,b+4,b,n-b-4,4) * matA.template block<4,1>(b,i); |
| // the respective transposed part: |
| Block<CoeffVectorType,4,1>(hCoeffs, b, 0, 4,1) += |
| Block<MatrixType,Dynamic,4>(matA,b+4,b,n-b-4,4).adjoint() * Block<MatrixType,Dynamic,1>(matA,b+4,i,n-b-4,1); |
| // the 4x4 block diagonal: |
| Block<CoeffVectorType,4,1>(hCoeffs, b, 0, 4,1) += |
| (Block<MatrixType,4,4>(matA,b,b,4,4).template part<LowerTriangular|SelfAdjoint>() |
| * (h * Block<MatrixType,4,1>(matA,b,i,4,1))).lazy(); |
| } |
| #endif |
| // todo: handle the remaining part |
| /* end optimized selfadjoint - vector product */ |
| |
| /* Another interesting note: the above rank-2 update is much slower than the following hand written loop. |
| * After an analyze of the ASM, it seems GCC (4.2) generate poor code because of the Block. Moreover, |
| * if we remove the specialization of Block for Matrix then it is even worse, much worse ! */ |
| #ifdef EIGEN_NEVER_DEFINED |
| for (int j1=i+1; j1<n; ++j1) |
| for (int i1=j1; i1<n; ++i1) |
| matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1)) |
| + hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i)); |
| #endif |
| /* end hand writen partial rank-2 update */ |
| |
| /* The current fastest implementation: the full matrix is used, no "optimization" to use/compute |
| * only half of the matrix. Custom vectorization of the inner col -= alpha X + beta Y such that access |
| * to col are always aligned. Once we support that in Assign, then the algorithm could be rewriten as |
| * a single compact expression. This code is therefore a good benchmark when will do that. */ |
| |
| // let's use the end of hCoeffs to store temporary values: |
| hCoeffs.end(n-i-1) = (matA.corner(BottomRight,n-i-1,n-i-1) * (h * matA.col(i).end(n-i-1))).lazy(); |
| // FIXME in the above expr a temporary is created because of the scalar multiple by h |
| |
| hCoeffs.end(n-i-1) += (h * Scalar(-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1))) |
| * matA.col(i).end(n-i-1); |
| |
| const Scalar* EIGEN_RESTRICT pb = &matA.coeffRef(0,i); |
| const Scalar* EIGEN_RESTRICT pa = (&hCoeffs.coeffRef(0)) - 1; |
| for (int j1=i+1; j1<n; ++j1) |
| { |
| int starti = i+1; |
| int alignedEnd = starti; |
| if (PacketSize>1) |
| { |
| int alignedStart = (starti) + ei_alignmentOffset(&matA.coeffRef(starti,j1), n-starti); |
| alignedEnd = alignedStart + ((n-alignedStart)/PacketSize)*PacketSize; |
| |
| for (int i1=starti; i1<alignedStart; ++i1) |
| matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1)) |
| + hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i)); |
| |
| Packet tmp0 = ei_pset1(hCoeffs.coeff(j1-1)); |
| Packet tmp1 = ei_pset1(matA.coeff(j1,i)); |
| Scalar* pc = &matA.coeffRef(0,j1); |
| for (int i1=alignedStart ; i1<alignedEnd; i1+=PacketSize) |
| ei_pstore(pc+i1,ei_psub(ei_pload(pc+i1), |
| ei_padd(ei_pmul(tmp0, ei_ploadu(pb+i1)), |
| ei_pmul(tmp1, ei_ploadu(pa+i1))))); |
| } |
| for (int i1=alignedEnd; i1<n; ++i1) |
| matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1)) |
| + hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i)); |
| } |
| /* end optimized implementation */ |
| |
| // note: at that point matA(i+1,i+1) is the (i+1)-th element of the final diagonal |
| // note: the sequence of the beta values leads to the subdiagonal entries |
| matA.col(i).coeffRef(i+1) = beta; |
| |
| hCoeffs.coeffRef(i) = h; |
| } |
| } |
| if (NumTraits<Scalar>::IsComplex) |
| { |
| // Householder transformation on the remaining single scalar |
| int i = n-2; |
| Scalar v0 = matA.col(i).coeff(i+1); |
| RealScalar beta = ei_abs(v0); |
| if (ei_real(v0)>=0.) |
| beta = -beta; |
| matA.col(i).coeffRef(i+1) = beta; |
| hCoeffs.coeffRef(i) = (beta - v0) / beta; |
| } |
| else |
| { |
| hCoeffs.coeffRef(n-2) = 0; |
| } |
| } |
| |
| /** reconstructs and returns the matrix Q */ |
| template<typename MatrixType> |
| typename Tridiagonalization<MatrixType>::MatrixType |
| Tridiagonalization<MatrixType>::matrixQ(void) const |
| { |
| int n = m_matrix.rows(); |
| MatrixType matQ = MatrixType::Identity(n,n); |
| for (int i = n-2; i>=0; i--) |
| { |
| Scalar tmp = m_matrix.coeff(i+1,i); |
| m_matrix.const_cast_derived().coeffRef(i+1,i) = 1; |
| |
| matQ.corner(BottomRight,n-i-1,n-i-1) -= |
| ((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) * |
| (m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy(); |
| |
| m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp; |
| } |
| return matQ; |
| } |
| |
| /** Performs a full decomposition in place */ |
| template<typename MatrixType> |
| void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| { |
| int n = mat.rows(); |
| ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1); |
| if (n==3 && (!NumTraits<Scalar>::IsComplex) ) |
| { |
| _decomposeInPlace3x3(mat, diag, subdiag, extractQ); |
| } |
| else |
| { |
| Tridiagonalization tridiag(mat); |
| diag = tridiag.diagonal(); |
| subdiag = tridiag.subDiagonal(); |
| if (extractQ) |
| mat = tridiag.matrixQ(); |
| } |
| } |
| |
| /** \internal |
| * Optimized path for 3x3 matrices. |
| * Especially useful for plane fitting. |
| */ |
| template<typename MatrixType> |
| void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| { |
| diag[0] = ei_real(mat(0,0)); |
| RealScalar v1norm2 = ei_abs2(mat(0,2)); |
| if (ei_isMuchSmallerThan(v1norm2, RealScalar(1))) |
| { |
| diag[1] = ei_real(mat(1,1)); |
| diag[2] = ei_real(mat(2,2)); |
| subdiag[0] = ei_real(mat(0,1)); |
| subdiag[1] = ei_real(mat(1,2)); |
| if (extractQ) |
| mat.setIdentity(); |
| } |
| else |
| { |
| RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2); |
| RealScalar invBeta = RealScalar(1)/beta; |
| Scalar m01 = mat(0,1) * invBeta; |
| Scalar m02 = mat(0,2) * invBeta; |
| Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1)); |
| diag[1] = ei_real(mat(1,1) + m02*q); |
| diag[2] = ei_real(mat(2,2) - m02*q); |
| subdiag[0] = beta; |
| subdiag[1] = ei_real(mat(1,2) - m01 * q); |
| if (extractQ) |
| { |
| mat(0,0) = 1; |
| mat(0,1) = 0; |
| mat(0,2) = 0; |
| mat(1,0) = 0; |
| mat(1,1) = m01; |
| mat(1,2) = m02; |
| mat(2,0) = 0; |
| mat(2,1) = m02; |
| mat(2,2) = -m01; |
| } |
| } |
| } |
| |
| #endif // EIGEN_HIDE_HEAVY_CODE |
| |
| #endif // EIGEN_TRIDIAGONALIZATION_H |