| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_AMBIVECTOR_H |
| #define EIGEN_AMBIVECTOR_H |
| |
| /** \internal |
| * Hybrid sparse/dense vector class designed for intensive read-write operations. |
| * |
| * See BasicSparseLLT and SparseProduct for usage examples. |
| */ |
| template<typename _Scalar> class AmbiVector |
| { |
| public: |
| typedef _Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| AmbiVector(int size) |
| : m_buffer(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1) |
| { |
| resize(size); |
| } |
| |
| void init(RealScalar estimatedDensity); |
| void init(int mode); |
| |
| void nonZeros() const; |
| |
| /** Specifies a sub-vector to work on */ |
| void setBounds(int start, int end) { m_start = start; m_end = end; } |
| |
| void setZero(); |
| |
| void restart(); |
| Scalar& coeffRef(int i); |
| Scalar coeff(int i); |
| |
| class Iterator; |
| |
| ~AmbiVector() { delete[] m_buffer; } |
| |
| void resize(int size) |
| { |
| if (m_allocatedSize < size) |
| reallocate(size); |
| m_size = size; |
| } |
| |
| int size() const { return m_size; } |
| |
| protected: |
| |
| void reallocate(int size) |
| { |
| // if the size of the matrix is not too large, let's allocate a bit more than needed such |
| // that we can handle dense vector even in sparse mode. |
| delete[] m_buffer; |
| if (size<1000) |
| { |
| int allocSize = (size * sizeof(ListEl))/sizeof(Scalar); |
| m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl); |
| m_buffer = new Scalar[allocSize]; |
| } |
| else |
| { |
| m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl); |
| m_buffer = new Scalar[size]; |
| } |
| m_size = size; |
| m_start = 0; |
| m_end = m_size; |
| } |
| |
| void reallocateSparse() |
| { |
| int copyElements = m_allocatedElements; |
| m_allocatedElements = std::min(int(m_allocatedElements*1.5),m_size); |
| int allocSize = m_allocatedElements * sizeof(ListEl); |
| allocSize = allocSize/sizeof(Scalar) + (allocSize%sizeof(Scalar)>0?1:0); |
| Scalar* newBuffer = new Scalar[allocSize]; |
| memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl)); |
| } |
| |
| protected: |
| // element type of the linked list |
| struct ListEl |
| { |
| int next; |
| int index; |
| Scalar value; |
| }; |
| |
| // used to store data in both mode |
| Scalar* m_buffer; |
| int m_size; |
| int m_start; |
| int m_end; |
| int m_allocatedSize; |
| int m_allocatedElements; |
| int m_mode; |
| |
| // linked list mode |
| int m_llStart; |
| int m_llCurrent; |
| int m_llSize; |
| |
| private: |
| AmbiVector(const AmbiVector&); |
| |
| }; |
| |
| /** \returns the number of non zeros in the current sub vector */ |
| template<typename Scalar> |
| void AmbiVector<Scalar>::nonZeros() const |
| { |
| if (m_mode==IsSparse) |
| return m_llSize; |
| else |
| return m_end - m_start; |
| } |
| |
| template<typename Scalar> |
| void AmbiVector<Scalar>::init(RealScalar estimatedDensity) |
| { |
| if (estimatedDensity>0.1) |
| init(IsDense); |
| else |
| init(IsSparse); |
| } |
| |
| template<typename Scalar> |
| void AmbiVector<Scalar>::init(int mode) |
| { |
| m_mode = mode; |
| if (m_mode==IsSparse) |
| { |
| m_llSize = 0; |
| m_llStart = -1; |
| } |
| } |
| |
| /** Must be called whenever we might perform a write access |
| * with an index smaller than the previous one. |
| * |
| * Don't worry, this function is extremely cheap. |
| */ |
| template<typename Scalar> |
| void AmbiVector<Scalar>::restart() |
| { |
| m_llCurrent = m_llStart; |
| } |
| |
| /** Set all coefficients of current subvector to zero */ |
| template<typename Scalar> |
| void AmbiVector<Scalar>::setZero() |
| { |
| if (m_mode==IsDense) |
| { |
| for (int i=m_start; i<m_end; ++i) |
| m_buffer[i] = Scalar(0); |
| } |
| else |
| { |
| ei_assert(m_mode==IsSparse); |
| m_llSize = 0; |
| m_llStart = -1; |
| } |
| } |
| |
| template<typename Scalar> |
| Scalar& AmbiVector<Scalar>::coeffRef(int i) |
| { |
| if (m_mode==IsDense) |
| return m_buffer[i]; |
| else |
| { |
| ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer); |
| // TODO factorize the following code to reduce code generation |
| ei_assert(m_mode==IsSparse); |
| if (m_llSize==0) |
| { |
| // this is the first element |
| m_llStart = 0; |
| m_llCurrent = 0; |
| ++m_llSize; |
| llElements[0].value = Scalar(0); |
| llElements[0].index = i; |
| llElements[0].next = -1; |
| return llElements[0].value; |
| } |
| else if (i<llElements[m_llStart].index) |
| { |
| // this is going to be the new first element of the list |
| ListEl& el = llElements[m_llSize]; |
| el.value = Scalar(0); |
| el.index = i; |
| el.next = m_llStart; |
| m_llStart = m_llSize; |
| ++m_llSize; |
| m_llCurrent = m_llStart; |
| return el.value; |
| } |
| else |
| { |
| int nextel = llElements[m_llCurrent].next; |
| ei_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index"); |
| while (nextel >= 0 && llElements[nextel].index<=i) |
| { |
| m_llCurrent = nextel; |
| nextel = llElements[nextel].next; |
| } |
| |
| if (llElements[m_llCurrent].index==i) |
| { |
| // the coefficient already exists and we found it ! |
| return llElements[m_llCurrent].value; |
| } |
| else |
| { |
| if (m_llSize>=m_allocatedElements) |
| reallocateSparse(); |
| ei_internal_assert(m_llSize<m_size && "internal error: overflow in sparse mode"); |
| // let's insert a new coefficient |
| ListEl& el = llElements[m_llSize]; |
| el.value = Scalar(0); |
| el.index = i; |
| el.next = llElements[m_llCurrent].next; |
| llElements[m_llCurrent].next = m_llSize; |
| ++m_llSize; |
| return el.value; |
| } |
| } |
| } |
| } |
| |
| template<typename Scalar> |
| Scalar AmbiVector<Scalar>::coeff(int i) |
| { |
| if (m_mode==IsDense) |
| return m_buffer[i]; |
| else |
| { |
| ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer); |
| ei_assert(m_mode==IsSparse); |
| if ((m_llSize==0) || (i<llElements[m_llStart].index)) |
| { |
| return Scalar(0); |
| } |
| else |
| { |
| int elid = m_llStart; |
| while (elid >= 0 && llElements[elid].index<i) |
| elid = llElements[elid].next; |
| |
| if (llElements[elid].index==i) |
| return llElements[m_llCurrent].value; |
| else |
| return Scalar(0); |
| } |
| } |
| } |
| |
| /** Iterator over the nonzero coefficients */ |
| template<typename _Scalar> |
| class AmbiVector<_Scalar>::Iterator |
| { |
| public: |
| typedef _Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| /** Default constructor |
| * \param vec the vector on which we iterate |
| * \param epsilon the minimal value used to prune zero coefficients. |
| * In practice, all coefficients having a magnitude smaller than \a epsilon |
| * are skipped. |
| */ |
| Iterator(const AmbiVector& vec, RealScalar epsilon = RealScalar(0.1)*precision<RealScalar>()) |
| : m_vector(vec) |
| { |
| m_epsilon = epsilon; |
| m_isDense = m_vector.m_mode==IsDense; |
| if (m_isDense) |
| { |
| m_cachedIndex = m_vector.m_start-1; |
| ++(*this); |
| } |
| else |
| { |
| ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer); |
| m_currentEl = m_vector.m_llStart; |
| while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon) |
| m_currentEl = llElements[m_currentEl].next; |
| if (m_currentEl<0) |
| { |
| m_cachedIndex = -1; |
| } |
| else |
| { |
| m_cachedIndex = llElements[m_currentEl].index; |
| m_cachedValue = llElements[m_currentEl].value; |
| } |
| } |
| } |
| |
| int index() const { return m_cachedIndex; } |
| Scalar value() const { return m_cachedValue; } |
| |
| operator bool() const { return m_cachedIndex>=0; } |
| |
| Iterator& operator++() |
| { |
| if (m_isDense) |
| { |
| do { |
| ++m_cachedIndex; |
| } while (m_cachedIndex<m_vector.m_end && ei_abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon); |
| if (m_cachedIndex<m_vector.m_end) |
| m_cachedValue = m_vector.m_buffer[m_cachedIndex]; |
| else |
| m_cachedIndex=-1; |
| } |
| else |
| { |
| ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer); |
| do { |
| m_currentEl = llElements[m_currentEl].next; |
| } while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon); |
| if (m_currentEl<0) |
| { |
| m_cachedIndex = -1; |
| } |
| else |
| { |
| m_cachedIndex = llElements[m_currentEl].index; |
| m_cachedValue = llElements[m_currentEl].value; |
| } |
| } |
| return *this; |
| } |
| |
| protected: |
| const AmbiVector& m_vector; // the target vector |
| int m_currentEl; // the current element in sparse/linked-list mode |
| RealScalar m_epsilon; // epsilon used to prune zero coefficients |
| int m_cachedIndex; // current coordinate |
| Scalar m_cachedValue; // current value |
| bool m_isDense; // mode of the vector |
| }; |
| |
| |
| #endif // EIGEN_AMBIVECTOR_H |