| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_SPARSELLT_H |
| #define EIGEN_SPARSELLT_H |
| |
| /** \ingroup Sparse_Module |
| * |
| * \class SparseLLT |
| * |
| * \brief LLT Cholesky decomposition of a sparse matrix and associated features |
| * |
| * \param MatrixType the type of the matrix of which we are computing the LLT Cholesky decomposition |
| * |
| * \sa class LLT, class LDLT |
| */ |
| template<typename MatrixType, int Backend = DefaultBackend> |
| class SparseLLT |
| { |
| protected: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef SparseMatrix<Scalar,LowerTriangular> CholMatrixType; |
| |
| enum { |
| SupernodalFactorIsDirty = 0x10000, |
| MatrixLIsDirty = 0x20000 |
| }; |
| |
| public: |
| |
| /** Creates a dummy LLT factorization object with flags \a flags. */ |
| SparseLLT(int flags = 0) |
| : m_flags(flags), m_status(0) |
| { |
| m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>(); |
| } |
| |
| /** Creates a LLT object and compute the respective factorization of \a matrix using |
| * flags \a flags. */ |
| SparseLLT(const MatrixType& matrix, int flags = 0) |
| : m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0) |
| { |
| m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>(); |
| compute(matrix); |
| } |
| |
| /** Sets the relative threshold value used to prune zero coefficients during the decomposition. |
| * |
| * Setting a value greater than zero speeds up computation, and yields to an imcomplete |
| * factorization with fewer non zero coefficients. Such approximate factors are especially |
| * useful to initialize an iterative solver. |
| * |
| * \warning if precision is greater that zero, the LLT factorization is not guaranteed to succeed |
| * even if the matrix is positive definite. |
| * |
| * Note that the exact meaning of this parameter might depends on the actual |
| * backend. Moreover, not all backends support this feature. |
| * |
| * \sa precision() */ |
| void setPrecision(RealScalar v) { m_precision = v; } |
| |
| /** \returns the current precision. |
| * |
| * \sa setPrecision() */ |
| RealScalar precision() const { return m_precision; } |
| |
| /** Sets the flags. Possible values are: |
| * - CompleteFactorization |
| * - IncompleteFactorization |
| * - MemoryEfficient (hint to use the memory most efficient method offered by the backend) |
| * - SupernodalMultifrontal (implies a complete factorization if supported by the backend, |
| * overloads the MemoryEfficient flags) |
| * - SupernodalLeftLooking (implies a complete factorization if supported by the backend, |
| * overloads the MemoryEfficient flags) |
| * |
| * \sa flags() */ |
| void setFlags(int f) { m_flags = f; } |
| /** \returns the current flags */ |
| int flags() const { return m_flags; } |
| |
| /** Computes/re-computes the LLT factorization */ |
| void compute(const MatrixType& matrix); |
| |
| /** \returns the lower triangular matrix L */ |
| inline const CholMatrixType& matrixL(void) const { return m_matrix; } |
| |
| template<typename Derived> |
| bool solveInPlace(MatrixBase<Derived> &b) const; |
| |
| /** \returns true if the factorization succeeded */ |
| inline bool succeeded(void) const { return m_succeeded; } |
| |
| protected: |
| CholMatrixType m_matrix; |
| RealScalar m_precision; |
| int m_flags; |
| mutable int m_status; |
| bool m_succeeded; |
| }; |
| |
| /** Computes / recomputes the LLT decomposition of matrix \a a |
| * using the default algorithm. |
| */ |
| template<typename MatrixType, int Backend> |
| void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a) |
| { |
| assert(a.rows()==a.cols()); |
| const int size = a.rows(); |
| m_matrix.resize(size, size); |
| |
| // allocate a temporary vector for accumulations |
| AmbiVector<Scalar> tempVector(size); |
| RealScalar density = a.nonZeros()/RealScalar(size*size); |
| |
| // TODO estimate the number of non zeros |
| m_matrix.startFill(a.nonZeros()*2); |
| for (int j = 0; j < size; ++j) |
| { |
| Scalar x = ei_real(a.coeff(j,j)); |
| |
| // TODO better estimate of the density ! |
| tempVector.init(density>0.001? IsDense : IsSparse); |
| tempVector.setBounds(j+1,size); |
| tempVector.setZero(); |
| // init with current matrix a |
| { |
| typename MatrixType::InnerIterator it(a,j); |
| ++it; // skip diagonal element |
| for (; it; ++it) |
| tempVector.coeffRef(it.index()) = it.value(); |
| } |
| for (int k=0; k<j+1; ++k) |
| { |
| typename CholMatrixType::InnerIterator it(m_matrix, k); |
| while (it && it.index()<j) |
| ++it; |
| if (it && it.index()==j) |
| { |
| Scalar y = it.value(); |
| x -= ei_abs2(y); |
| ++it; // skip j-th element, and process remaining column coefficients |
| tempVector.restart(); |
| for (; it; ++it) |
| { |
| tempVector.coeffRef(it.index()) -= it.value() * y; |
| } |
| } |
| } |
| // copy the temporary vector to the respective m_matrix.col() |
| // while scaling the result by 1/real(x) |
| RealScalar rx = ei_sqrt(ei_real(x)); |
| m_matrix.fill(j,j) = rx; |
| Scalar y = Scalar(1)/rx; |
| for (typename AmbiVector<Scalar>::Iterator it(tempVector, m_precision*rx); it; ++it) |
| { |
| m_matrix.fill(it.index(), j) = it.value() * y; |
| } |
| } |
| m_matrix.endFill(); |
| } |
| |
| /** Computes b = L^-T L^-1 b */ |
| template<typename MatrixType, int Backend> |
| template<typename Derived> |
| bool SparseLLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const |
| { |
| const int size = m_matrix.rows(); |
| ei_assert(size==b.rows()); |
| |
| m_matrix.solveTriangularInPlace(b); |
| // FIXME should be simply .adjoint() but it fails to compile... |
| if (NumTraits<Scalar>::IsComplex) |
| { |
| CholMatrixType aux = m_matrix.conjugate(); |
| aux.transpose().solveTriangularInPlace(b); |
| } |
| else |
| m_matrix.transpose().solveTriangularInPlace(b); |
| |
| return true; |
| } |
| |
| #endif // EIGEN_SPARSELLT_H |