| namespace Eigen { |
| |
| /** \page CustomizingEigen Customizing/Extending Eigen |
| |
| Eigen2 can be extended in several ways, for instance, by defining global methods, \ref ExtendingMatrixBase "by adding custom methods to MatrixBase", adding support to \ref CustomScalarType "custom types" etc. |
| |
| \b Table \b of \b contents |
| - \ref ExtendingMatrixBase |
| - \ref CustomScalarType |
| - \ref PreprocessorDirectives |
| |
| \section ExtendingMatrixBase Extending MatrixBase |
| |
| In this section we will see how to add custom methods to MatrixBase. Since all expressions and matrix types inherit MatrixBase, adding a method to MatrixBase make it immediately available to all expressions ! A typical use case is, for instance, to make Eigen compatible with another API. |
| |
| You certainly know that in C++ it is not possible to add methods to an extending class. So how that's possible ? Here the trick is to include in the declaration of MatrixBase a file defined by the preprocessor token \c EIGEN_MATRIXBASE_PLUGIN: |
| \code |
| class MatrixBase { |
| // ... |
| #ifdef EIGEN_MATRIXBASE_PLUGIN |
| #include EIGEN_MATRIXBASE_PLUGIN |
| #endif |
| }; |
| \endcode |
| Therefore to extend MatrixBase with you own methods you just have to create a file with your method declaration and define EIGEN_MATRIXBASE_PLUGIN before you include any Eigen's header file. |
| |
| Here is an example of such an extension file: \n |
| \b MatrixBaseAddons.h |
| \code |
| inline Scalar at(uint i, uint j) const { return this->operator()(i,j); } |
| inline Scalar& at(uint i, uint j) { return this->operator()(i,j); } |
| inline Scalar at(uint i) const { return this->operator[](i); } |
| inline Scalar& at(uint i) { return this->operator[](i); } |
| |
| inline RealScalar squaredLength() const { return squaredNorm(); } |
| inline RealScalar length() const { return norm(); } |
| inline RealScalar invLength(void) const { return fast_inv_sqrt(squaredNorm()); } |
| |
| template<typename OtherDerived> |
| inline Scalar squaredDistanceTo(const MatrixBase<OtherDerived>& other) const |
| { return (derived() - other.derived()).squaredNorm(); } |
| |
| template<typename OtherDerived> |
| inline RealScalar distanceTo(const MatrixBase<OtherDerived>& other) const |
| { return ei_sqrt(derived().squaredDistanceTo(other)); } |
| |
| inline void scaleTo(RealScalar l) { RealScalar vl = norm(); if (vl>1e-9) derived() *= (l/vl); } |
| |
| inline Transpose<Derived> transposed() {return transpose();} |
| inline const Transpose<Derived> transposed() const {return transpose();} |
| |
| inline uint minComponentId(void) const { int i; minCoeff(&i); return i; } |
| inline uint maxComponentId(void) const { int i; maxCoeff(&i); return i; } |
| |
| template<typename OtherDerived> |
| void makeFloor(const MatrixBase<OtherDerived>& other) { derived() = derived().cwise().min(other.derived()); } |
| template<typename OtherDerived> |
| void makeCeil(const MatrixBase<OtherDerived>& other) { derived() = derived().cwise().max(other.derived()); } |
| |
| const typename Cwise<Derived>::ScalarAddReturnType |
| operator+(const Scalar& scalar) const { return cwise() + scalar } |
| |
| friend const typename Cwise<Derived>::ScalarAddReturnType |
| operator+(const Scalar& scalar, const MatrixBase<Derived>& mat) { return mat + scalar; } |
| \endcode |
| |
| Then one can the following declaration in the config.h or whatever prerequisites header file of his project: |
| \code |
| #define EIGEN_MATRIXBASE_PLUGIN "MatrixBaseAddons.h" |
| \endcode |
| |
| |
| |
| \section CustomScalarType Using custom scalar types |
| |
| By default, Eigen currently supports the following scalar types: \c int, \c float, \c double, \c std::complex<float>, \c std::complex<double>, \c long \c double, \c long \c long \c int (64 bits integers), and \c bool. The \c long \c double is especially useful on x86-64 systems or when the SSE2 instruction set is enabled because it enforces the use of x87 registers with extended accuracy. |
| |
| In order to add support for a custom type \c T you need: |
| 1 - make sure the common operator (+,-,*,/,etc.) are supported by the type \c T |
| 2 - add a specialization of struct Eigen::NumTraits<T> (see \ref NumTraits) |
| 3 - define a couple of math functions for your type such as: ei_sqrt, ei_abs, etc... |
| (see the file Eigen/src/Core/MathFunctions.h) |
| |
| Here is a concrete example adding support for the Adolc's \c adouble type. <a href="http://www.math.tu-dresden.de/~adol-c/">Adolc</a> is an automatic differentiation library. The type \c adouble is basically a real value tracking the values of any number of partial derivatives. |
| |
| \code |
| #ifndef ADLOCSUPPORT_H |
| #define ADLOCSUPPORT_H |
| |
| #define ADOLC_TAPELESS |
| #include <adolc/adouble.h> |
| #include <Eigen/Core> |
| |
| namespace Eigen { |
| |
| template<> struct NumTraits<adtl::adouble> |
| { |
| typedef adtl::adouble Real; |
| typedef adtl::adouble FloatingPoint; |
| enum { |
| IsComplex = 0, |
| HasFloatingPoint = 1, |
| ReadCost = 1, |
| AddCost = 1, |
| MulCost = 1 |
| }; |
| }; |
| |
| } |
| |
| // the Adolc's type adouble is defined in the adtl namespace |
| // therefore, the following ei_* functions *must* be defined |
| // in the same namespace |
| namespace adtl { |
| |
| inline const adouble& ei_conj(const adouble& x) { return x; } |
| inline const adouble& ei_real(const adouble& x) { return x; } |
| inline adouble ei_imag(const adouble&) { return 0.; } |
| inline adouble ei_abs(const adouble& x) { return fabs(x); } |
| inline adouble ei_abs2(const adouble& x) { return x*x; } |
| inline adouble ei_sqrt(const adouble& x) { return sqrt(x); } |
| inline adouble ei_exp(const adouble& x) { return exp(x); } |
| inline adouble ei_log(const adouble& x) { return log(x); } |
| inline adouble ei_sin(const adouble& x) { return sin(x); } |
| inline adouble ei_cos(const adouble& x) { return cos(x); } |
| inline adouble ei_pow(const adouble& x, adouble y) { return pow(x, y); } |
| |
| } |
| |
| #endif // ADLOCSUPPORT_H |
| \endcode |
| |
| |
| |
| \section PreprocessorDirectives Preprocessor directives |
| |
| The value of the following preprocessor tokens can be overwritten by defining them before including any Eigen's headers. |
| - \b EIGEN_DONT_VECTORIZE disables explicit vectorization when defined. |
| - \b EIGEN_UNROLLING_LIMIT defines the maximal instruction counts to enable meta unrolling of loops. Set it to zero to disable unrolling. The default is 100. |
| - \b EIGEN_TUNE_FOR_L2_CACHE_SIZE represents the maximal size in Bytes of L2 blocks. Since several blocks have to stay concurently in L2 cache, this value should correspond to at most 1/4 of the size of L2 cache. |
| - \b EIGEN_NO_STATIC_ASSERT replaces compile time static assertions by runtime assertions |
| - \b EIGEN_MATRIXBASE_PLUGIN see \ref ExtendingMatrixBase |
| |
| */ |
| |
| } |