blob: 3fc9c53356fa9d0f789760d1265e157fbcb79679 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_MAP_H
#define EIGEN_CXX11_TENSOR_TENSOR_MAP_H
namespace Eigen {
template<int InnerStrideAtCompileTime, int OuterStrideAtCompileTime> class Stride;
/** \class TensorMap
* \ingroup CXX11_Tensor_Module
*
* \brief A tensor expression mapping an existing array of data.
*
*/
template<typename PlainObjectType, int Options_> class TensorMap : public TensorBase<TensorMap<PlainObjectType, Options_> >
{
public:
typedef TensorMap<PlainObjectType, Options_> Self;
typedef typename PlainObjectType::Base Base;
typedef typename Eigen::internal::nested<Self>::type Nested;
typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind;
typedef typename internal::traits<PlainObjectType>::Index Index;
typedef typename internal::traits<PlainObjectType>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type Packet;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename Base::CoeffReturnType CoeffReturnType;
/* typedef typename internal::conditional<
bool(internal::is_lvalue<PlainObjectType>::value),
Scalar *,
const Scalar *>::type
PointerType;*/
typedef Scalar* PointerType;
typedef PointerType PointerArgType;
static const int Options = Options_;
enum {
IsAligned = bool(EIGEN_ALIGN) && ((int(Options_)&Aligned)==Aligned),
PacketAccess = true,
};
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension) : m_data(dataPtr), m_dimensions(array<DenseIndex, PlainObjectType::NumIndices>({{firstDimension}})) {
// The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
EIGEN_STATIC_ASSERT(1 == PlainObjectType::NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
}
#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
template<typename... IndexTypes> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension, IndexTypes... otherDimensions) : m_data(dataPtr), m_dimensions(array<DenseIndex, PlainObjectType::NumIndices>({{firstDimension, otherDimensions...}})) {
// The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == PlainObjectType::NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
}
#endif
inline TensorMap(PointerArgType dataPtr, const array<Index, PlainObjectType::NumIndices>& dimensions)
: m_data(dataPtr), m_dimensions(dimensions)
{ }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_dimensions[n]; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const typename PlainObjectType::Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar* data() { return m_data; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar* data() const { return m_data; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, PlainObjectType::NumIndices>& indices) const
{
// eigen_assert(checkIndexRange(indices));
if (PlainObjectType::Options&RowMajor) {
const Index index = m_dimensions.IndexOfRowMajor(indices);
return m_data[index];
} else {
const Index index = m_dimensions.IndexOfColMajor(indices);
return m_data[index];
}
}
#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
template<typename... IndexTypes> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) const
{
static_assert(sizeof...(otherIndices) + 1 == PlainObjectType::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
if (PlainObjectType::Options&RowMajor) {
const Index index = m_dimensions.IndexOfRowMajor(array<Index, PlainObjectType::NumIndices>{{firstIndex, otherIndices...}});
return m_data[index];
} else {
const Index index = m_dimensions.IndexOfColMajor(array<Index, PlainObjectType::NumIndices>{{firstIndex, otherIndices...}});
return m_data[index];
}
}
#else
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
return m_data[index];
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i1 + i0 * m_dimensions[0];
return m_data[index];
} else {
const Index index = i0 + i1 * m_dimensions[0];
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i2 + m_dimensions[1] * (i1 + m_dimensions[0] * i0);
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2);
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0));
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3));
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)));
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4)));
return m_data[index];
}
}
#endif
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, PlainObjectType::NumIndices>& indices)
{
// eigen_assert(checkIndexRange(indices));
if (PlainObjectType::Options&RowMajor) {
const Index index = m_dimensions.IndexOfRowMajor(indices);
return m_data[index];
} else {
const Index index = m_dimensions.IndexOfColMajor(indices);
return m_data[index];
}
}
#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
template<typename... IndexTypes> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
{
static_assert(sizeof...(otherIndices) + 1 == PlainObjectType::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
if (PlainObjectType::Options&RowMajor) {
const Index index = m_dimensions.IndexOfRowMajor(array<Index, PlainObjectType::NumIndices>{{firstIndex, otherIndices...}});
return m_data[index];
} else {
const Index index = m_dimensions.IndexOfColMajor(array<Index, PlainObjectType::NumIndices>{{firstIndex, otherIndices...}});
return m_data[index];
}
}
#else
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index index)
{
eigen_internal_assert(index >= 0 && index < size());
return m_data[index];
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i1 + i0 * m_dimensions[0];
return m_data[index];
} else {
const Index index = i0 + i1 * m_dimensions[0];
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i2 + m_dimensions[1] * (i1 + m_dimensions[0] * i0);
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2);
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0));
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3));
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)));
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4)));
return m_data[index];
}
}
#endif
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Self& operator=(const OtherDerived& other)
{
internal::TensorAssign<Self, const OtherDerived>::run(*this, other);
return *this;
}
private:
typename PlainObjectType::Scalar* m_data;
typename PlainObjectType::Dimensions m_dimensions;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_MAP_H