| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" |
| // research report written by Ming Gu and Stanley C.Eisenstat |
| // The code variable names correspond to the names they used in their |
| // report |
| // |
| // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> |
| // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> |
| // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> |
| // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> |
| // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_BDCSVD_H |
| #define EIGEN_BDCSVD_H |
| |
| #define EPSILON 0.0000000000000001 |
| |
| #define ALGOSWAP 16 |
| |
| namespace Eigen { |
| /** \ingroup SVD_Module |
| * |
| * |
| * \class BDCSVD |
| * |
| * \brief class Bidiagonal Divide and Conquer SVD |
| * |
| * \param MatrixType the type of the matrix of which we are computing the SVD decomposition |
| * We plan to have a very similar interface to JacobiSVD on this class. |
| * It should be used to speed up the calcul of SVD for big matrices. |
| */ |
| template<typename _MatrixType> |
| class BDCSVD : public SVDBase<_MatrixType> |
| { |
| typedef SVDBase<_MatrixType> Base; |
| |
| public: |
| using Base::rows; |
| using Base::cols; |
| |
| typedef _MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef typename MatrixType::Index Index; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), |
| MatrixOptions = MatrixType::Options |
| }; |
| |
| typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, |
| MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> |
| MatrixUType; |
| typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, |
| MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> |
| MatrixVType; |
| typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; |
| typedef typename internal::plain_row_type<MatrixType>::type RowType; |
| typedef typename internal::plain_col_type<MatrixType>::type ColType; |
| typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX; |
| typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr; |
| typedef Matrix<RealScalar, Dynamic, 1> VectorType; |
| typedef Array<RealScalar, Dynamic, 1> ArrayXr; |
| |
| /** \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via BDCSVD::compute(const MatrixType&). |
| */ |
| BDCSVD() |
| : SVDBase<_MatrixType>::SVDBase(), |
| algoswap(ALGOSWAP), m_numIters(0) |
| {} |
| |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem size. |
| * \sa BDCSVD() |
| */ |
| BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0) |
| : SVDBase<_MatrixType>::SVDBase(), |
| algoswap(ALGOSWAP), m_numIters(0) |
| { |
| allocate(rows, cols, computationOptions); |
| } |
| |
| /** \brief Constructor performing the decomposition of given matrix. |
| * |
| * \param matrix the matrix to decompose |
| * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
| * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, |
| * #ComputeFullV, #ComputeThinV. |
| * |
| * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
| * available with the (non - default) FullPivHouseholderQR preconditioner. |
| */ |
| BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0) |
| : SVDBase<_MatrixType>::SVDBase(), |
| algoswap(ALGOSWAP), m_numIters(0) |
| { |
| compute(matrix, computationOptions); |
| } |
| |
| ~BDCSVD() |
| { |
| } |
| /** \brief Method performing the decomposition of given matrix using custom options. |
| * |
| * \param matrix the matrix to decompose |
| * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
| * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, |
| * #ComputeFullV, #ComputeThinV. |
| * |
| * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
| * available with the (non - default) FullPivHouseholderQR preconditioner. |
| */ |
| SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions); |
| |
| /** \brief Method performing the decomposition of given matrix using current options. |
| * |
| * \param matrix the matrix to decompose |
| * |
| * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). |
| */ |
| SVDBase<MatrixType>& compute(const MatrixType& matrix) |
| { |
| return compute(matrix, this->m_computationOptions); |
| } |
| |
| void setSwitchSize(int s) |
| { |
| eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3"); |
| algoswap = s; |
| } |
| |
| |
| /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. |
| * |
| * \param b the right - hand - side of the equation to solve. |
| * |
| * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. |
| * |
| * \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving. |
| * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. |
| */ |
| template<typename Rhs> |
| inline const internal::solve_retval<BDCSVD, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| eigen_assert(this->m_isInitialized && "BDCSVD is not initialized."); |
| eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() && |
| "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); |
| return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived()); |
| } |
| |
| |
| const MatrixUType& matrixU() const |
| { |
| eigen_assert(this->m_isInitialized && "SVD is not initialized."); |
| if (isTranspose){ |
| eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?"); |
| return this->m_matrixV; |
| } |
| else |
| { |
| eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); |
| return this->m_matrixU; |
| } |
| |
| } |
| |
| |
| const MatrixVType& matrixV() const |
| { |
| eigen_assert(this->m_isInitialized && "SVD is not initialized."); |
| if (isTranspose){ |
| eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?"); |
| return this->m_matrixU; |
| } |
| else |
| { |
| eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); |
| return this->m_matrixV; |
| } |
| } |
| |
| private: |
| void allocate(Index rows, Index cols, unsigned int computationOptions); |
| void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); |
| void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); |
| void computeSingVals(const ArrayXr& col0, const ArrayXr& diag, VectorType& singVals, |
| ArrayXr& shifts, ArrayXr& mus); |
| void perturbCol0(const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals, |
| const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat); |
| void computeSingVecs(const ArrayXr& zhat, const ArrayXr& diag, const VectorType& singVals, |
| const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V); |
| void deflation43(Index firstCol, Index shift, Index i, Index size); |
| void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); |
| void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); |
| void copyUV(const typename internal::UpperBidiagonalization<MatrixX>::HouseholderUSequenceType& householderU, |
| const typename internal::UpperBidiagonalization<MatrixX>::HouseholderVSequenceType& householderV); |
| |
| protected: |
| MatrixXr m_naiveU, m_naiveV; |
| MatrixXr m_computed; |
| Index nRec; |
| int algoswap; |
| bool isTranspose, compU, compV; |
| |
| public: |
| int m_numIters; |
| }; //end class BDCSVD |
| |
| |
| // Methode to allocate ans initialize matrix and attributs |
| template<typename MatrixType> |
| void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) |
| { |
| isTranspose = (cols > rows); |
| if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return; |
| m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize ); |
| if (isTranspose){ |
| compU = this->computeU(); |
| compV = this->computeV(); |
| } |
| else |
| { |
| compV = this->computeU(); |
| compU = this->computeV(); |
| } |
| if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 ); |
| else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 ); |
| |
| if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize); |
| |
| |
| //should be changed for a cleaner implementation |
| if (isTranspose){ |
| bool aux; |
| if (this->computeU()||this->computeV()){ |
| aux = this->m_computeFullU; |
| this->m_computeFullU = this->m_computeFullV; |
| this->m_computeFullV = aux; |
| aux = this->m_computeThinU; |
| this->m_computeThinU = this->m_computeThinV; |
| this->m_computeThinV = aux; |
| } |
| } |
| }// end allocate |
| |
| // Methode which compute the BDCSVD for the int |
| template<> |
| SVDBase<Matrix<int, Dynamic, Dynamic> >& |
| BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) { |
| allocate(matrix.rows(), matrix.cols(), computationOptions); |
| this->m_nonzeroSingularValues = 0; |
| m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols()); |
| for (int i=0; i<this->m_diagSize; i++) { |
| this->m_singularValues.coeffRef(i) = 0; |
| } |
| if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows()); |
| if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols()); |
| this->m_isInitialized = true; |
| return *this; |
| } |
| |
| |
| // Methode which compute the BDCSVD |
| template<typename MatrixType> |
| SVDBase<MatrixType>& |
| BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) |
| { |
| allocate(matrix.rows(), matrix.cols(), computationOptions); |
| using std::abs; |
| |
| //**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ; |
| MatrixType copy; |
| if (isTranspose) copy = matrix.adjoint(); |
| else copy = matrix; |
| |
| internal::UpperBidiagonalization<MatrixX> bid(copy); |
| |
| //**** step 2 Divide |
| m_computed.topRows(this->m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose(); |
| m_computed.template bottomRows<1>().setZero(); |
| divide(0, this->m_diagSize - 1, 0, 0, 0); |
| |
| //**** step 3 copy |
| for (int i=0; i<this->m_diagSize; i++) { |
| RealScalar a = abs(m_computed.coeff(i, i)); |
| this->m_singularValues.coeffRef(i) = a; |
| if (a == 0){ |
| this->m_nonzeroSingularValues = i; |
| this->m_singularValues.tail(this->m_diagSize - i - 1).setZero(); |
| break; |
| } |
| else if (i == this->m_diagSize - 1) |
| { |
| this->m_nonzeroSingularValues = i + 1; |
| break; |
| } |
| } |
| copyUV(bid.householderU(), bid.householderV()); |
| this->m_isInitialized = true; |
| return *this; |
| }// end compute |
| |
| |
| template<typename MatrixType> |
| void BDCSVD<MatrixType>::copyUV(const typename internal::UpperBidiagonalization<MatrixX>::HouseholderUSequenceType& householderU, |
| const typename internal::UpperBidiagonalization<MatrixX>::HouseholderVSequenceType& householderV) |
| { |
| // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa |
| if (this->computeU()){ |
| Index Ucols = this->m_computeThinU ? this->m_nonzeroSingularValues : householderU.cols(); |
| this->m_matrixU = MatrixX::Identity(householderU.cols(), Ucols); |
| Index blockCols = this->m_computeThinU ? this->m_nonzeroSingularValues : this->m_diagSize; |
| this->m_matrixU.block(0, 0, this->m_diagSize, blockCols) = |
| m_naiveV.template cast<Scalar>().block(0, 0, this->m_diagSize, blockCols); |
| this->m_matrixU = householderU * this->m_matrixU; |
| } |
| if (this->computeV()){ |
| Index Vcols = this->m_computeThinV ? this->m_nonzeroSingularValues : householderV.cols(); |
| this->m_matrixV = MatrixX::Identity(householderV.cols(), Vcols); |
| Index blockCols = this->m_computeThinV ? this->m_nonzeroSingularValues : this->m_diagSize; |
| this->m_matrixV.block(0, 0, this->m_diagSize, blockCols) = |
| m_naiveU.template cast<Scalar>().block(0, 0, this->m_diagSize, blockCols); |
| this->m_matrixV = householderV * this->m_matrixV; |
| } |
| } |
| |
| // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the |
| // place of the submatrix we are currently working on. |
| |
| //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; |
| //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; |
| // lastCol + 1 - firstCol is the size of the submatrix. |
| //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W) |
| //@param firstRowW : Same as firstRowW with the column. |
| //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix |
| // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper. |
| template<typename MatrixType> |
| void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, |
| Index firstColW, Index shift) |
| { |
| // requires nbRows = nbCols + 1; |
| using std::pow; |
| using std::sqrt; |
| using std::abs; |
| const Index n = lastCol - firstCol + 1; |
| const Index k = n/2; |
| RealScalar alphaK; |
| RealScalar betaK; |
| RealScalar r0; |
| RealScalar lambda, phi, c0, s0; |
| MatrixXr l, f; |
| // We use the other algorithm which is more efficient for small |
| // matrices. |
| if (n < algoswap){ |
| JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), |
| ComputeFullU | (ComputeFullV * compV)) ; |
| if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU(); |
| else |
| { |
| m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0); |
| m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n); |
| } |
| if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV(); |
| m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); |
| for (int i=0; i<n; i++) |
| { |
| m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i); |
| } |
| return; |
| } |
| // We use the divide and conquer algorithm |
| alphaK = m_computed(firstCol + k, firstCol + k); |
| betaK = m_computed(firstCol + k + 1, firstCol + k); |
| // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices |
| // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the |
| // right submatrix before the left one. |
| divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); |
| divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); |
| if (compU) |
| { |
| lambda = m_naiveU(firstCol + k, firstCol + k); |
| phi = m_naiveU(firstCol + k + 1, lastCol + 1); |
| } |
| else |
| { |
| lambda = m_naiveU(1, firstCol + k); |
| phi = m_naiveU(0, lastCol + 1); |
| } |
| r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) |
| + abs(betaK * phi) * abs(betaK * phi)); |
| if (compU) |
| { |
| l = m_naiveU.row(firstCol + k).segment(firstCol, k); |
| f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); |
| } |
| else |
| { |
| l = m_naiveU.row(1).segment(firstCol, k); |
| f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); |
| } |
| if (compV) m_naiveV(firstRowW+k, firstColW) = 1; |
| if (r0 == 0) |
| { |
| c0 = 1; |
| s0 = 0; |
| } |
| else |
| { |
| c0 = alphaK * lambda / r0; |
| s0 = betaK * phi / r0; |
| } |
| if (compU) |
| { |
| MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1)); |
| // we shiftW Q1 to the right |
| for (Index i = firstCol + k - 1; i >= firstCol; i--) |
| { |
| m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1); |
| } |
| // we shift q1 at the left with a factor c0 |
| m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0); |
| // last column = q1 * - s0 |
| m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0)); |
| // first column = q2 * s0 |
| m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) << |
| m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0; |
| // q2 *= c0 |
| m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; |
| } |
| else |
| { |
| RealScalar q1 = (m_naiveU(0, firstCol + k)); |
| // we shift Q1 to the right |
| for (Index i = firstCol + k - 1; i >= firstCol; i--) |
| { |
| m_naiveU(0, i + 1) = m_naiveU(0, i); |
| } |
| // we shift q1 at the left with a factor c0 |
| m_naiveU(0, firstCol) = (q1 * c0); |
| // last column = q1 * - s0 |
| m_naiveU(0, lastCol + 1) = (q1 * ( - s0)); |
| // first column = q2 * s0 |
| m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; |
| // q2 *= c0 |
| m_naiveU(1, lastCol + 1) *= c0; |
| m_naiveU.row(1).segment(firstCol + 1, k).setZero(); |
| m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); |
| } |
| m_computed(firstCol + shift, firstCol + shift) = r0; |
| m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real(); |
| m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real(); |
| |
| |
| // Second part: try to deflate singular values in combined matrix |
| deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); |
| |
| // Third part: compute SVD of combined matrix |
| MatrixXr UofSVD, VofSVD; |
| VectorType singVals; |
| computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); |
| if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= UofSVD; |
| else m_naiveU.block(0, firstCol, 2, n + 1) *= UofSVD; |
| if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= VofSVD; |
| m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); |
| m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; |
| }// end divide |
| |
| // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in |
| // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing |
| // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except |
| // that if compV is false, then V is not computed. Singular values are sorted in decreasing order. |
| // |
| // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better |
| // handling of round-off errors, be consistent in ordering |
| template <typename MatrixType> |
| void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V) |
| { |
| // TODO Get rid of these copies (?) |
| ArrayXr col0 = m_computed.block(firstCol, firstCol, n, 1); |
| ArrayXr diag = m_computed.block(firstCol, firstCol, n, n).diagonal(); |
| diag(0) = 0; |
| |
| // compute singular values and vectors (in decreasing order) |
| singVals.resize(n); |
| U.resize(n+1, n+1); |
| if (compV) V.resize(n, n); |
| |
| if (col0.hasNaN() || diag.hasNaN()) return; |
| |
| ArrayXr shifts(n), mus(n), zhat(n); |
| computeSingVals(col0, diag, singVals, shifts, mus); |
| perturbCol0(col0, diag, singVals, shifts, mus, zhat); |
| computeSingVecs(zhat, diag, singVals, shifts, mus, U, V); |
| |
| // Reverse order so that singular values in increased order |
| singVals.reverseInPlace(); |
| U.leftCols(n) = U.leftCols(n).rowwise().reverse().eval(); |
| if (compV) V = V.rowwise().reverse().eval(); |
| } |
| |
| template <typename MatrixType> |
| void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& diag, |
| VectorType& singVals, ArrayXr& shifts, ArrayXr& mus) |
| { |
| using std::abs; |
| using std::swap; |
| |
| Index n = col0.size(); |
| for (Index k = 0; k < n; ++k) { |
| if (col0(k) == 0) { |
| // entry is deflated, so singular value is on diagonal |
| singVals(k) = diag(k); |
| mus(k) = 0; |
| shifts(k) = diag(k); |
| continue; |
| } |
| |
| // otherwise, use secular equation to find singular value |
| RealScalar left = diag(k); |
| RealScalar right = (k != n-1) ? diag(k+1) : (diag(n-1) + col0.matrix().norm()); |
| |
| // first decide whether it's closer to the left end or the right end |
| RealScalar mid = left + (right-left) / 2; |
| RealScalar fMid = 1 + (col0.square() / ((diag + mid) * (diag - mid))).sum(); |
| |
| RealScalar shift; |
| if (k == n-1 || fMid > 0) shift = left; |
| else shift = right; |
| |
| // measure everything relative to shift |
| ArrayXr diagShifted = diag - shift; |
| |
| // initial guess |
| RealScalar muPrev, muCur; |
| if (shift == left) { |
| muPrev = (right - left) * 0.1; |
| if (k == n-1) muCur = right - left; |
| else muCur = (right - left) * 0.5; |
| } else { |
| muPrev = -(right - left) * 0.1; |
| muCur = -(right - left) * 0.5; |
| } |
| |
| RealScalar fPrev = 1 + (col0.square() / ((diagShifted - muPrev) * (diag + shift + muPrev))).sum(); |
| RealScalar fCur = 1 + (col0.square() / ((diagShifted - muCur) * (diag + shift + muCur))).sum(); |
| if (abs(fPrev) < abs(fCur)) { |
| swap(fPrev, fCur); |
| swap(muPrev, muCur); |
| } |
| |
| // rational interpolation: fit a function of the form a / mu + b through the two previous |
| // iterates and use its zero to compute the next iterate |
| bool useBisection = false; |
| while (abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * (std::max)(abs(muCur), abs(muPrev)) && fCur != fPrev && !useBisection) { |
| ++m_numIters; |
| |
| RealScalar a = (fCur - fPrev) / (1/muCur - 1/muPrev); |
| RealScalar b = fCur - a / muCur; |
| |
| muPrev = muCur; |
| fPrev = fCur; |
| muCur = -a / b; |
| fCur = 1 + (col0.square() / ((diagShifted - muCur) * (diag + shift + muCur))).sum(); |
| |
| if (shift == left && (muCur < 0 || muCur > right - left)) useBisection = true; |
| if (shift == right && (muCur < -(right - left) || muCur > 0)) useBisection = true; |
| } |
| |
| // fall back on bisection method if rational interpolation did not work |
| if (useBisection) { |
| RealScalar leftShifted, rightShifted; |
| if (shift == left) { |
| leftShifted = 1e-30; |
| if (k == 0) rightShifted = right - left; |
| else rightShifted = (right - left) * 0.6; // theoretically we can take 0.5, but let's be safe |
| } else { |
| leftShifted = -(right - left) * 0.6; |
| rightShifted = -1e-30; |
| } |
| |
| RealScalar fLeft = 1 + (col0.square() / ((diagShifted - leftShifted) * (diag + shift + leftShifted))).sum(); |
| RealScalar fRight = 1 + (col0.square() / ((diagShifted - rightShifted) * (diag + shift + rightShifted))).sum(); |
| assert(fLeft * fRight < 0); |
| |
| while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * (std::max)(abs(leftShifted), abs(rightShifted))) { |
| RealScalar midShifted = (leftShifted + rightShifted) / 2; |
| RealScalar fMid = 1 + (col0.square() / ((diagShifted - midShifted) * (diag + shift + midShifted))).sum(); |
| if (fLeft * fMid < 0) { |
| rightShifted = midShifted; |
| fRight = fMid; |
| } else { |
| leftShifted = midShifted; |
| fLeft = fMid; |
| } |
| } |
| |
| muCur = (leftShifted + rightShifted) / 2; |
| } |
| |
| singVals[k] = shift + muCur; |
| shifts[k] = shift; |
| mus[k] = muCur; |
| |
| // perturb singular value slightly if it equals diagonal entry to avoid division by zero later |
| // (deflation is supposed to avoid this from happening) |
| if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon(); |
| if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon(); |
| } |
| } |
| |
| |
| // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) |
| template <typename MatrixType> |
| void BDCSVD<MatrixType>::perturbCol0 |
| (const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals, |
| const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat) |
| { |
| Index n = col0.size(); |
| for (Index k = 0; k < n; ++k) { |
| if (col0(k) == 0) |
| zhat(k) = 0; |
| else { |
| // see equation (3.6) |
| using std::sqrt; |
| RealScalar tmp = |
| sqrt( |
| (singVals(n-1) + diag(k)) * (mus(n-1) + (shifts(n-1) - diag(k))) |
| * ( |
| ((singVals.head(k).array() + diag(k)) * (mus.head(k) + (shifts.head(k) - diag(k)))) |
| / ((diag.head(k).array() + diag(k)) * (diag.head(k).array() - diag(k))) |
| ).prod() |
| * ( |
| ((singVals.segment(k, n-k-1).array() + diag(k)) * (mus.segment(k, n-k-1) + (shifts.segment(k, n-k-1) - diag(k)))) |
| / ((diag.tail(n-k-1) + diag(k)) * (diag.tail(n-k-1) - diag(k))) |
| ).prod() |
| ); |
| if (col0(k) > 0) zhat(k) = tmp; |
| else zhat(k) = -tmp; |
| } |
| } |
| } |
| |
| // compute singular vectors |
| template <typename MatrixType> |
| void BDCSVD<MatrixType>::computeSingVecs |
| (const ArrayXr& zhat, const ArrayXr& diag, const VectorType& singVals, |
| const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V) |
| { |
| Index n = zhat.size(); |
| for (Index k = 0; k < n; ++k) { |
| if (zhat(k) == 0) { |
| U.col(k) = VectorType::Unit(n+1, k); |
| if (compV) V.col(k) = VectorType::Unit(n, k); |
| } else { |
| U.col(k).head(n) = zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k])); |
| U(n,k) = 0; |
| U.col(k).normalize(); |
| |
| if (compV) { |
| V.col(k).tail(n-1) = (diag * zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k]))).tail(n-1); |
| V(0,k) = -1; |
| V.col(k).normalize(); |
| } |
| } |
| } |
| U.col(n) = VectorType::Unit(n+1, n); |
| } |
| |
| |
| // page 12_13 |
| // i >= 1, di almost null and zi non null. |
| // We use a rotation to zero out zi applied to the left of M |
| template <typename MatrixType> |
| void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){ |
| using std::abs; |
| using std::sqrt; |
| using std::pow; |
| RealScalar c = m_computed(firstCol + shift, firstCol + shift); |
| RealScalar s = m_computed(i, firstCol + shift); |
| RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2)); |
| if (r == 0){ |
| m_computed(i, i)=0; |
| return; |
| } |
| c/=r; |
| s/=r; |
| m_computed(firstCol + shift, firstCol + shift) = r; |
| m_computed(i, firstCol + shift) = 0; |
| m_computed(i, i) = 0; |
| if (compU){ |
| m_naiveU.col(firstCol).segment(firstCol,size) = |
| c * m_naiveU.col(firstCol).segment(firstCol, size) - |
| s * m_naiveU.col(i).segment(firstCol, size) ; |
| |
| m_naiveU.col(i).segment(firstCol, size) = |
| (c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) + |
| (s/c) * m_naiveU.col(firstCol).segment(firstCol,size); |
| } |
| }// end deflation 43 |
| |
| |
| // page 13 |
| // i,j >= 1, i != j and |di - dj| < epsilon * norm2(M) |
| // We apply two rotations to have zj = 0; |
| template <typename MatrixType> |
| void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){ |
| using std::abs; |
| using std::sqrt; |
| using std::conj; |
| using std::pow; |
| RealScalar c = m_computed(firstColm, firstColm + j - 1); |
| RealScalar s = m_computed(firstColm, firstColm + i - 1); |
| RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2)); |
| if (r==0){ |
| m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); |
| return; |
| } |
| c/=r; |
| s/=r; |
| m_computed(firstColm + i, firstColm) = r; |
| m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); |
| m_computed(firstColm + j, firstColm) = 0; |
| if (compU){ |
| m_naiveU.col(firstColu + i).segment(firstColu, size) = |
| c * m_naiveU.col(firstColu + i).segment(firstColu, size) - |
| s * m_naiveU.col(firstColu + j).segment(firstColu, size) ; |
| |
| m_naiveU.col(firstColu + j).segment(firstColu, size) = |
| (c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) + |
| (s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size); |
| } |
| if (compV){ |
| m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) = |
| c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) + |
| s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ; |
| |
| m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) = |
| (c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) - |
| (s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1); |
| } |
| }// end deflation 44 |
| |
| |
| // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] |
| template <typename MatrixType> |
| void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){ |
| //condition 4.1 |
| using std::sqrt; |
| const Index length = lastCol + 1 - firstCol; |
| RealScalar norm1 = m_computed.block(firstCol+shift, firstCol+shift, length, 1).squaredNorm(); |
| RealScalar norm2 = m_computed.block(firstCol+shift, firstCol+shift, length, length).diagonal().squaredNorm(); |
| RealScalar EPS = 10 * NumTraits<RealScalar>::epsilon() * sqrt(norm1 + norm2); |
| if (m_computed(firstCol + shift, firstCol + shift) < EPS){ |
| m_computed(firstCol + shift, firstCol + shift) = EPS; |
| } |
| |
| //condition 4.2 |
| for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){ |
| if (std::abs(m_computed(i, firstCol + shift)) < EPS){ |
| m_computed(i, firstCol + shift) = 0; |
| } |
| } |
| |
| //condition 4.3 |
| for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){ |
| if (m_computed(i, i) < EPS){ |
| deflation43(firstCol, shift, i, length); |
| } |
| } |
| |
| //condition 4.4 |
| |
| Index i=firstCol + shift + 1, j=firstCol + shift + k + 1; |
| //we stock the final place of each line |
| Index *permutation = new Index[length]; |
| |
| for (Index p =1; p < length; p++) { |
| if (i> firstCol + shift + k){ |
| permutation[p] = j; |
| j++; |
| } else if (j> lastCol + shift) |
| { |
| permutation[p] = i; |
| i++; |
| } |
| else |
| { |
| if (m_computed(i, i) < m_computed(j, j)){ |
| permutation[p] = j; |
| j++; |
| } |
| else |
| { |
| permutation[p] = i; |
| i++; |
| } |
| } |
| } |
| //we do the permutation |
| RealScalar aux; |
| //we stock the current index of each col |
| //and the column of each index |
| Index *realInd = new Index[length]; |
| Index *realCol = new Index[length]; |
| for (int pos = 0; pos< length; pos++){ |
| realCol[pos] = pos + firstCol + shift; |
| realInd[pos] = pos; |
| } |
| const Index Zero = firstCol + shift; |
| VectorType temp; |
| for (int i = 1; i < length - 1; i++){ |
| const Index I = i + Zero; |
| const Index realI = realInd[i]; |
| const Index j = permutation[length - i] - Zero; |
| const Index J = realCol[j]; |
| |
| //diag displace |
| aux = m_computed(I, I); |
| m_computed(I, I) = m_computed(J, J); |
| m_computed(J, J) = aux; |
| |
| //firstrow displace |
| aux = m_computed(I, Zero); |
| m_computed(I, Zero) = m_computed(J, Zero); |
| m_computed(J, Zero) = aux; |
| |
| // change columns |
| if (compU) { |
| temp = m_naiveU.col(I - shift).segment(firstCol, length + 1); |
| m_naiveU.col(I - shift).segment(firstCol, length + 1) << |
| m_naiveU.col(J - shift).segment(firstCol, length + 1); |
| m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp; |
| } |
| else |
| { |
| temp = m_naiveU.col(I - shift).segment(0, 2); |
| m_naiveU.col(I - shift).segment(0, 2) << |
| m_naiveU.col(J - shift).segment(0, 2); |
| m_naiveU.col(J - shift).segment(0, 2) << temp; |
| } |
| if (compV) { |
| const Index CWI = I + firstColW - Zero; |
| const Index CWJ = J + firstColW - Zero; |
| temp = m_naiveV.col(CWI).segment(firstRowW, length); |
| m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length); |
| m_naiveV.col(CWJ).segment(firstRowW, length) << temp; |
| } |
| |
| //update real pos |
| realCol[realI] = J; |
| realCol[j] = I; |
| realInd[J - Zero] = realI; |
| realInd[I - Zero] = j; |
| } |
| for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){ |
| if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){ |
| deflation44(firstCol , |
| firstCol + shift, |
| firstRowW, |
| firstColW, |
| i - Zero, |
| i + 1 - Zero, |
| length); |
| } |
| } |
| delete [] permutation; |
| delete [] realInd; |
| delete [] realCol; |
| }//end deflation |
| |
| |
| namespace internal{ |
| |
| template<typename _MatrixType, typename Rhs> |
| struct solve_retval<BDCSVD<_MatrixType>, Rhs> |
| : solve_retval_base<BDCSVD<_MatrixType>, Rhs> |
| { |
| typedef BDCSVD<_MatrixType> BDCSVDType; |
| EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| eigen_assert(rhs().rows() == dec().rows()); |
| // A = U S V^* |
| // So A^{ - 1} = V S^{ - 1} U^* |
| Index diagSize = (std::min)(dec().rows(), dec().cols()); |
| typename BDCSVDType::SingularValuesType invertedSingVals(diagSize); |
| Index nonzeroSingVals = dec().nonzeroSingularValues(); |
| invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse(); |
| invertedSingVals.tail(diagSize - nonzeroSingVals).setZero(); |
| |
| dst = dec().matrixV().leftCols(diagSize) |
| * invertedSingVals.asDiagonal() |
| * dec().matrixU().leftCols(diagSize).adjoint() |
| * rhs(); |
| return; |
| } |
| }; |
| |
| } //end namespace internal |
| |
| /** \svd_module |
| * |
| * \return the singular value decomposition of \c *this computed by |
| * BDC Algorithm |
| * |
| * \sa class BDCSVD |
| */ |
| /* |
| template<typename Derived> |
| BDCSVD<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const |
| { |
| return BDCSVD<PlainObject>(*this, computationOptions); |
| } |
| */ |
| |
| } // end namespace Eigen |
| |
| #endif |