blob: 1a6387a37509c0fbc25e6f66874537bc28bcbc14 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2025 Rasmus Munk Larsen
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REDUCTIONS_CLANG_H
#define EIGEN_REDUCTIONS_CLANG_H
namespace Eigen {
namespace internal {
// --- Reductions ---
#if EIGEN_HAS_BUILTIN(__builtin_reduce_min) && EIGEN_HAS_BUILTIN(__builtin_reduce_max) && \
EIGEN_HAS_BUILTIN(__builtin_reduce_or)
#define EIGEN_CLANG_PACKET_REDUX_MINMAX(PACKET_TYPE) \
template <> \
EIGEN_STRONG_INLINE unpacket_traits<PACKET_TYPE>::type predux_min(const PACKET_TYPE& a) { \
return __builtin_reduce_min(a); \
} \
template <> \
EIGEN_STRONG_INLINE unpacket_traits<PACKET_TYPE>::type predux_max(const PACKET_TYPE& a) { \
return __builtin_reduce_max(a); \
} \
template <> \
EIGEN_STRONG_INLINE bool predux_any(const PACKET_TYPE& a) { \
return __builtin_reduce_or(a != 0) != 0; \
}
EIGEN_CLANG_PACKET_REDUX_MINMAX(Packet16f)
EIGEN_CLANG_PACKET_REDUX_MINMAX(Packet8d)
EIGEN_CLANG_PACKET_REDUX_MINMAX(Packet16i)
EIGEN_CLANG_PACKET_REDUX_MINMAX(Packet8l)
#undef EIGEN_CLANG_PACKET_REDUX_MINMAX
#endif
#if EIGEN_HAS_BUILTIN(__builtin_reduce_add) && EIGEN_HAS_BUILTIN(__builtin_reduce_mul)
#define EIGEN_CLANG_PACKET_REDUX_INT(PACKET_TYPE) \
template <> \
EIGEN_STRONG_INLINE unpacket_traits<PACKET_TYPE>::type predux<PACKET_TYPE>(const PACKET_TYPE& a) { \
return __builtin_reduce_add(a); \
} \
template <> \
EIGEN_STRONG_INLINE unpacket_traits<PACKET_TYPE>::type predux_mul<PACKET_TYPE>(const PACKET_TYPE& a) { \
return __builtin_reduce_mul(a); \
}
// __builtin_reduce_{mul,add} are only defined for integer types.
EIGEN_CLANG_PACKET_REDUX_INT(Packet16i)
EIGEN_CLANG_PACKET_REDUX_INT(Packet8l)
#undef EIGEN_CLANG_PACKET_REDUX_INT
#endif
#if EIGEN_HAS_BUILTIN(__builtin_shufflevector)
namespace detail {
template <typename VectorT>
EIGEN_STRONG_INLINE std::pair<scalar_type_of_vector_t<VectorT>, scalar_type_of_vector_t<VectorT>> ReduceAdd16(
const VectorT& a) {
const auto t1 = __builtin_shufflevector(a, a, 0, 1, 2, 3, 4, 5, 6, 7) +
__builtin_shufflevector(a, a, 8, 9, 10, 11, 12, 13, 14, 15);
const auto t2 = __builtin_shufflevector(t1, t1, 0, 1, 2, 3) + __builtin_shufflevector(t1, t1, 4, 5, 6, 7);
const auto t3 = __builtin_shufflevector(t2, t2, 0, 1) + __builtin_shufflevector(t2, t2, 2, 3);
return {t3[0], t3[1]};
}
template <typename VectorT>
EIGEN_STRONG_INLINE std::pair<scalar_type_of_vector_t<VectorT>, scalar_type_of_vector_t<VectorT>> ReduceAdd8(
const VectorT& a) {
const auto t1 = __builtin_shufflevector(a, a, 0, 1, 2, 3) + __builtin_shufflevector(a, a, 4, 5, 6, 7);
const auto t2 = __builtin_shufflevector(t1, t1, 0, 1) + __builtin_shufflevector(t1, t1, 2, 3);
return {t2[0], t2[1]};
}
template <typename VectorT>
EIGEN_STRONG_INLINE std::pair<scalar_type_of_vector_t<VectorT>, scalar_type_of_vector_t<VectorT>> ReduceMul16(
const VectorT& a) {
const auto t1 = __builtin_shufflevector(a, a, 0, 1, 2, 3, 4, 5, 6, 7) *
__builtin_shufflevector(a, a, 8, 9, 10, 11, 12, 13, 14, 15);
const auto t2 = __builtin_shufflevector(t1, t1, 0, 1, 2, 3) * __builtin_shufflevector(t1, t1, 4, 5, 6, 7);
const auto t3 = __builtin_shufflevector(t2, t2, 0, 1) * __builtin_shufflevector(t2, t2, 2, 3);
return {t3[0], t3[1]};
}
template <typename VectorT>
EIGEN_STRONG_INLINE std::pair<scalar_type_of_vector_t<VectorT>, scalar_type_of_vector_t<VectorT>> ReduceMul8(
const VectorT& a) {
const auto t1 = __builtin_shufflevector(a, a, 0, 1, 2, 3) * __builtin_shufflevector(a, a, 4, 5, 6, 7);
const auto t2 = __builtin_shufflevector(t1, t1, 0, 1) * __builtin_shufflevector(t1, t1, 2, 3);
return {t2[0], t2[1]};
}
} // namespace detail
template <>
EIGEN_STRONG_INLINE float predux<Packet16f>(const Packet16f& a) {
float even, odd;
std::tie(even, odd) = detail::ReduceAdd16(a);
return even + odd;
}
template <>
EIGEN_STRONG_INLINE double predux<Packet8d>(const Packet8d& a) {
double even, odd;
std::tie(even, odd) = detail::ReduceAdd8(a);
return even + odd;
}
template <>
EIGEN_STRONG_INLINE float predux_mul<Packet16f>(const Packet16f& a) {
float even, odd;
std::tie(even, odd) = detail::ReduceMul16(a);
return even * odd;
}
template <>
EIGEN_STRONG_INLINE double predux_mul<Packet8d>(const Packet8d& a) {
double even, odd;
std::tie(even, odd) = detail::ReduceMul8(a);
return even * odd;
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux<Packet8cf>(const Packet8cf& a) {
float re, im;
std::tie(re, im) = detail::ReduceAdd16(a.v);
return std::complex<float>(re, im);
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux<Packet4cd>(const Packet4cd& a) {
double re, im;
std::tie(re, im) = detail::ReduceAdd8(a.v);
return std::complex<double>(re, im);
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet8cf>(const Packet8cf& a) {
const Packet4cf lower4 = Packet4cf(__builtin_shufflevector(a.v, a.v, 0, 1, 2, 3, 4, 5, 6, 7));
const Packet4cf upper4 = Packet4cf(__builtin_shufflevector(a.v, a.v, 8, 9, 10, 11, 12, 13, 14, 15));
const Packet4cf prod4 = pmul<Packet4cf>(lower4, upper4);
const Packet2cf lower2 = Packet2cf(__builtin_shufflevector(prod4.v, prod4.v, 0, 1, 2, 3));
const Packet2cf upper2 = Packet2cf(__builtin_shufflevector(prod4.v, prod4.v, 4, 5, 6, 7));
const Packet2cf prod2 = pmul<Packet2cf>(lower2, upper2);
return prod2[0] * prod2[1];
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet4cd>(const Packet4cd& a) {
const Packet2cd lower2 = Packet2cd(__builtin_shufflevector(a.v, a.v, 0, 1, 2, 3));
const Packet2cd upper2 = Packet2cd(__builtin_shufflevector(a.v, a.v, 4, 5, 6, 7));
const Packet2cd prod2 = pmul<Packet2cd>(lower2, upper2);
return prod2[0] * prod2[1];
}
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_REDUCTIONS_CLANG_H