| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_RUNTIME_NO_MALLOC |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| #include <Eigen/LU> |
| |
| template <typename MatrixType> |
| void generalized_eigensolver_real(const MatrixType& m) { |
| /* this test covers the following files: |
| GeneralizedEigenSolver.h |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef std::complex<Scalar> ComplexScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| MatrixType a = MatrixType::Random(rows, cols); |
| MatrixType b = MatrixType::Random(rows, cols); |
| MatrixType a1 = MatrixType::Random(rows, cols); |
| MatrixType b1 = MatrixType::Random(rows, cols); |
| MatrixType spdA = a.adjoint() * a + a1.adjoint() * a1; |
| MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1; |
| |
| // lets compare to GeneralizedSelfAdjointEigenSolver |
| { |
| GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB); |
| GeneralizedEigenSolver<MatrixType> eig(spdA, spdB); |
| |
| VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); |
| |
| VectorType realEigenvalues = eig.eigenvalues().real(); |
| std::sort(realEigenvalues.data(), realEigenvalues.data() + realEigenvalues.size()); |
| VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues()); |
| |
| // check eigenvectors |
| typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); |
| typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); |
| VERIFY_IS_APPROX(spdA * V, spdB * V * D); |
| } |
| |
| // non symmetric case: |
| { |
| GeneralizedEigenSolver<MatrixType> eig(rows); |
| // TODO enable full-prealocation of required memory, this probably requires an in-place mode for |
| // HessenbergDecomposition |
| // Eigen::internal::set_is_malloc_allowed(false); |
| eig.compute(a, b); |
| // Eigen::internal::set_is_malloc_allowed(true); |
| for (Index k = 0; k < cols; ++k) { |
| Matrix<ComplexScalar, Dynamic, Dynamic> tmp = |
| (eig.betas()(k) * a).template cast<ComplexScalar>() - eig.alphas()(k) * b; |
| if (tmp.size() > 1 && tmp.norm() > (std::numeric_limits<Scalar>::min)()) tmp /= tmp.norm(); |
| VERIFY_IS_MUCH_SMALLER_THAN(std::abs(tmp.determinant()), Scalar(1)); |
| } |
| // check eigenvectors |
| typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); |
| typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); |
| VERIFY_IS_APPROX(a * V, b * V * D); |
| } |
| |
| // regression test for bug 1098 |
| { |
| GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a, b.adjoint() * b); |
| eig1.compute(a.adjoint() * a, b.adjoint() * b); |
| GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a, b.adjoint() * b); |
| eig2.compute(a.adjoint() * a, b.adjoint() * b); |
| } |
| |
| // check without eigenvectors |
| { |
| GeneralizedEigenSolver<MatrixType> eig1(spdA, spdB, true); |
| GeneralizedEigenSolver<MatrixType> eig2(spdA, spdB, false); |
| VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues()); |
| } |
| } |
| |
| template <typename MatrixType> |
| void generalized_eigensolver_assert() { |
| GeneralizedEigenSolver<MatrixType> eig; |
| // all raise assert if uninitialized |
| VERIFY_RAISES_ASSERT(eig.info()); |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
| VERIFY_RAISES_ASSERT(eig.alphas()); |
| VERIFY_RAISES_ASSERT(eig.betas()); |
| |
| // none raise assert after compute called |
| eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20)); |
| VERIFY(eig.info() == Success); |
| eig.eigenvectors(); |
| eig.eigenvalues(); |
| eig.alphas(); |
| eig.betas(); |
| |
| // eigenvectors() raises assert, if eigenvectors were not requested |
| eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20), false); |
| VERIFY(eig.info() == Success); |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| eig.eigenvalues(); |
| eig.alphas(); |
| eig.betas(); |
| |
| // all except info raise assert if realQZ did not converge |
| eig.setMaxIterations(0); // force real QZ to fail. |
| eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20)); |
| VERIFY(eig.info() == NoConvergence); |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
| VERIFY_RAISES_ASSERT(eig.alphas()); |
| VERIFY_RAISES_ASSERT(eig.betas()); |
| } |
| |
| EIGEN_DECLARE_TEST(eigensolver_generalized_real) { |
| for (int i = 0; i < g_repeat; i++) { |
| int s = 0; |
| CALL_SUBTEST_1(generalized_eigensolver_real(Matrix4f())); |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4); |
| CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(s, s))); |
| |
| // some trivial but implementation-wise special cases |
| CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(1, 1))); |
| CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(2, 2))); |
| CALL_SUBTEST_3(generalized_eigensolver_real(Matrix<double, 1, 1>())); |
| CALL_SUBTEST_4(generalized_eigensolver_real(Matrix2d())); |
| CALL_SUBTEST_5(generalized_eigensolver_assert<MatrixXd>()); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |
| } |