| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // Silence warnings about using the deprecated non-canonical .eulerAngles(), which are still being tested. |
| #define EIGEN_NO_DEPRECATED_WARNING |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| #include <Eigen/LU> |
| #include <Eigen/SVD> |
| |
| template <typename Scalar> |
| void verify_euler(const Matrix<Scalar, 3, 1>& ea, int i, int j, int k) { |
| typedef Matrix<Scalar, 3, 3> Matrix3; |
| typedef Matrix<Scalar, 3, 1> Vector3; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| const Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * |
| AngleAxisx(ea[2], Vector3::Unit(k))); |
| |
| // Test non-canonical eulerAngles |
| { |
| Vector3 eabis = m.eulerAngles(i, j, k); |
| Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * |
| AngleAxisx(eabis[2], Vector3::Unit(k))); |
| VERIFY_IS_APPROX(m, mbis); |
| |
| // approx_or_less_than does not work for 0 |
| VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1))); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI)); |
| VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI)); |
| VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI)); |
| } |
| |
| // Test canonicalEulerAngles |
| { |
| Vector3 eabis = m.canonicalEulerAngles(i, j, k); |
| Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * |
| AngleAxisx(eabis[2], Vector3::Unit(k))); |
| VERIFY_IS_APPROX(m, mbis); |
| |
| VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[0]); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI)); |
| if (i != k) { |
| // Tait-Bryan sequence |
| VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI / 2), eabis[1]); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI / 2)); |
| } else { |
| // Proper Euler sequence |
| // approx_or_less_than does not work for 0 |
| VERIFY(0 < eabis[1] || test_isMuchSmallerThan(eabis[1], Scalar(1))); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI)); |
| } |
| VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI)); |
| } |
| } |
| |
| template <typename Scalar> |
| void check_all_var(const Matrix<Scalar, 3, 1>& ea) { |
| auto verify_permutation = [](const Matrix<Scalar, 3, 1>& eap) { |
| verify_euler(eap, 0, 1, 2); |
| verify_euler(eap, 0, 1, 0); |
| verify_euler(eap, 0, 2, 1); |
| verify_euler(eap, 0, 2, 0); |
| |
| verify_euler(eap, 1, 2, 0); |
| verify_euler(eap, 1, 2, 1); |
| verify_euler(eap, 1, 0, 2); |
| verify_euler(eap, 1, 0, 1); |
| |
| verify_euler(eap, 2, 0, 1); |
| verify_euler(eap, 2, 0, 2); |
| verify_euler(eap, 2, 1, 0); |
| verify_euler(eap, 2, 1, 2); |
| }; |
| |
| int i, j, k; |
| for (i = 0; i < 3; i++) |
| for (j = 0; j < 3; j++) |
| for (k = 0; k < 3; k++) { |
| Matrix<Scalar, 3, 1> eap(ea(i), ea(j), ea(k)); |
| verify_permutation(eap); |
| } |
| } |
| |
| template <typename Scalar> |
| void eulerangles() { |
| typedef Matrix<Scalar, 3, 3> Matrix3; |
| typedef Matrix<Scalar, 3, 1> Vector3; |
| typedef Array<Scalar, 3, 1> Array3; |
| typedef Quaternion<Scalar> Quaternionx; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| |
| Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
| Quaternionx q1; |
| q1 = AngleAxisx(a, Vector3::Random().normalized()); |
| Matrix3 m; |
| m = q1; |
| |
| Vector3 ea = m.eulerAngles(0, 1, 2); |
| check_all_var(ea); |
| ea = m.eulerAngles(0, 1, 0); |
| check_all_var(ea); |
| |
| // Check with purely random Quaternion: |
| q1.coeffs() = Quaternionx::Coefficients::Random().normalized(); |
| m = q1; |
| ea = m.eulerAngles(0, 1, 2); |
| check_all_var(ea); |
| ea = m.eulerAngles(0, 1, 0); |
| check_all_var(ea); |
| |
| // Check with random angles in range [-pi:pi]x[-pi:pi]x[-pi:pi]. |
| ea = Array3::Random() * Scalar(EIGEN_PI); |
| check_all_var(ea); |
| |
| auto test_with_some_zeros = [](const Vector3& eaz) { |
| check_all_var(eaz); |
| Vector3 ea_glz = eaz; |
| ea_glz[0] = Scalar(0); |
| check_all_var(ea_glz); |
| ea_glz[0] = internal::random<Scalar>(-0.001, 0.001); |
| check_all_var(ea_glz); |
| ea_glz[2] = Scalar(0); |
| check_all_var(ea_glz); |
| ea_glz[2] = internal::random<Scalar>(-0.001, 0.001); |
| check_all_var(ea_glz); |
| }; |
| // Check gimbal lock configurations and a bit noisy gimbal locks |
| Vector3 ea_gl = ea; |
| ea_gl[1] = EIGEN_PI / 2; |
| test_with_some_zeros(ea_gl); |
| ea_gl[1] += internal::random<Scalar>(-0.001, 0.001); |
| test_with_some_zeros(ea_gl); |
| ea_gl[1] = -EIGEN_PI / 2; |
| test_with_some_zeros(ea_gl); |
| ea_gl[1] += internal::random<Scalar>(-0.001, 0.001); |
| test_with_some_zeros(ea_gl); |
| ea_gl[1] = EIGEN_PI / 2; |
| ea_gl[2] = ea_gl[0]; |
| test_with_some_zeros(ea_gl); |
| ea_gl[1] += internal::random<Scalar>(-0.001, 0.001); |
| test_with_some_zeros(ea_gl); |
| ea_gl[1] = -EIGEN_PI / 2; |
| test_with_some_zeros(ea_gl); |
| ea_gl[1] += internal::random<Scalar>(-0.001, 0.001); |
| test_with_some_zeros(ea_gl); |
| |
| // Similar to above, but with pi instead of pi/2 |
| Vector3 ea_pi = ea; |
| ea_pi[1] = EIGEN_PI; |
| test_with_some_zeros(ea_gl); |
| ea_pi[1] += internal::random<Scalar>(-0.001, 0.001); |
| test_with_some_zeros(ea_gl); |
| ea_pi[1] = -EIGEN_PI; |
| test_with_some_zeros(ea_gl); |
| ea_pi[1] += internal::random<Scalar>(-0.001, 0.001); |
| test_with_some_zeros(ea_gl); |
| ea_pi[1] = EIGEN_PI; |
| ea_pi[2] = ea_pi[0]; |
| test_with_some_zeros(ea_gl); |
| ea_pi[1] += internal::random<Scalar>(-0.001, 0.001); |
| test_with_some_zeros(ea_gl); |
| ea_pi[1] = -EIGEN_PI; |
| test_with_some_zeros(ea_gl); |
| ea_pi[1] += internal::random<Scalar>(-0.001, 0.001); |
| test_with_some_zeros(ea_gl); |
| |
| ea[2] = ea[0] = internal::random<Scalar>(0, Scalar(EIGEN_PI)); |
| check_all_var(ea); |
| |
| ea[0] = ea[1] = internal::random<Scalar>(0, Scalar(EIGEN_PI)); |
| check_all_var(ea); |
| |
| ea[1] = 0; |
| check_all_var(ea); |
| |
| ea.head(2).setZero(); |
| check_all_var(ea); |
| |
| ea.setZero(); |
| check_all_var(ea); |
| } |
| |
| EIGEN_DECLARE_TEST(geo_eulerangles) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(eulerangles<float>()); |
| CALL_SUBTEST_2(eulerangles<double>()); |
| } |
| } |