| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // discard stack allocation as that too bypasses malloc |
| #define EIGEN_STACK_ALLOCATION_LIMIT 0 |
| // heap allocation will raise an assert if enabled at runtime |
| #define EIGEN_RUNTIME_NO_MALLOC |
| |
| #include "main.h" |
| #include <Eigen/Cholesky> |
| #include <Eigen/Eigenvalues> |
| #include <Eigen/LU> |
| #include <Eigen/QR> |
| #include <Eigen/SVD> |
| |
| template <typename MatrixType> |
| void nomalloc(const MatrixType& m) { |
| /* this test check no dynamic memory allocation are issued with fixed-size matrices |
| */ |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); |
| |
| VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2); |
| VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c))); |
| VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), (m1.array() * m1.array()).matrix()); |
| VERIFY_IS_APPROX((m1 * m1.transpose()) * m2, m1 * (m1.transpose() * m2)); |
| |
| m2.col(0).noalias() = m1 * m1.col(0); |
| m2.col(0).noalias() -= m1.adjoint() * m1.col(0); |
| m2.col(0).noalias() -= m1 * m1.row(0).adjoint(); |
| m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint(); |
| |
| m2.row(0).noalias() = m1.row(0) * m1; |
| m2.row(0).noalias() -= m1.row(0) * m1.adjoint(); |
| m2.row(0).noalias() -= m1.col(0).adjoint() * m1; |
| m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint(); |
| VERIFY_IS_APPROX(m2, m2); |
| |
| m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0); |
| m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0); |
| m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint(); |
| m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint(); |
| |
| m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>(); |
| m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>(); |
| m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>(); |
| m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>(); |
| VERIFY_IS_APPROX(m2, m2); |
| |
| m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0); |
| m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0); |
| m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint(); |
| m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint(); |
| |
| m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>(); |
| m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>(); |
| m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>(); |
| m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>(); |
| VERIFY_IS_APPROX(m2, m2); |
| |
| m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), -1); |
| m2.template selfadjointView<Upper>().rankUpdate(m1.row(0), -1); |
| m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0)); // rank-2 |
| |
| // The following fancy matrix-matrix products are not safe yet regarding static allocation |
| m2.template selfadjointView<Lower>().rankUpdate(m1); |
| m2 += m2.template triangularView<Upper>() * m1; |
| m2.template triangularView<Upper>() = m2 * m2; |
| m1 += m1.template selfadjointView<Lower>() * m2; |
| VERIFY_IS_APPROX(m2, m2); |
| } |
| |
| template <typename Scalar> |
| void ctms_decompositions() { |
| const int maxSize = 16; |
| const int size = 12; |
| |
| typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> Matrix; |
| |
| typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, 0, maxSize, 1> Vector; |
| |
| typedef Eigen::Matrix<std::complex<Scalar>, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> ComplexMatrix; |
| |
| const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size)); |
| Matrix X(size, size); |
| const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); |
| const Matrix saA = A.adjoint() * A; |
| const Vector b(Vector::Random(size)); |
| Vector x(size); |
| |
| // Cholesky module |
| Eigen::LLT<Matrix> LLT; |
| LLT.compute(A); |
| X = LLT.solve(B); |
| x = LLT.solve(b); |
| Eigen::LDLT<Matrix> LDLT; |
| LDLT.compute(A); |
| X = LDLT.solve(B); |
| x = LDLT.solve(b); |
| |
| // Eigenvalues module |
| Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; |
| hessDecomp.compute(complexA); |
| Eigen::ComplexSchur<ComplexMatrix> cSchur(size); |
| cSchur.compute(complexA); |
| Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; |
| cEigSolver.compute(complexA); |
| Eigen::EigenSolver<Matrix> eigSolver; |
| eigSolver.compute(A); |
| Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); |
| saEigSolver.compute(saA); |
| Eigen::Tridiagonalization<Matrix> tridiag; |
| tridiag.compute(saA); |
| |
| // LU module |
| Eigen::PartialPivLU<Matrix> ppLU; |
| ppLU.compute(A); |
| X = ppLU.solve(B); |
| x = ppLU.solve(b); |
| Eigen::FullPivLU<Matrix> fpLU; |
| fpLU.compute(A); |
| X = fpLU.solve(B); |
| x = fpLU.solve(b); |
| |
| // QR module |
| Eigen::HouseholderQR<Matrix> hQR; |
| hQR.compute(A); |
| X = hQR.solve(B); |
| x = hQR.solve(b); |
| Eigen::ColPivHouseholderQR<Matrix> cpQR; |
| cpQR.compute(A); |
| X = cpQR.solve(B); |
| x = cpQR.solve(b); |
| Eigen::FullPivHouseholderQR<Matrix> fpQR; |
| fpQR.compute(A); |
| // FIXME X = fpQR.solve(B); |
| x = fpQR.solve(b); |
| |
| // SVD module |
| Eigen::JacobiSVD<Matrix, ComputeFullU | ComputeFullV> jSVD; |
| jSVD.compute(A); |
| } |
| |
| void test_zerosized() { |
| // default constructors: |
| Eigen::MatrixXd A; |
| Eigen::VectorXd v; |
| // explicit zero-sized: |
| Eigen::ArrayXXd A0(0, 0); |
| Eigen::ArrayXd v0(0); |
| |
| // assigning empty objects to each other: |
| A = A0; |
| v = v0; |
| } |
| |
| template <typename MatrixType> |
| void test_reference(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor }; |
| enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor }; |
| Index rows = m.rows(), cols = m.cols(); |
| typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag> MatrixX; |
| typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT; |
| // Dynamic reference: |
| typedef Eigen::Ref<const MatrixX> Ref; |
| typedef Eigen::Ref<const MatrixXT> RefT; |
| |
| Ref r1(m); |
| Ref r2(m.block(rows / 3, cols / 4, rows / 2, cols / 2)); |
| RefT r3(m.transpose()); |
| RefT r4(m.topLeftCorner(rows / 2, cols / 2).transpose()); |
| |
| VERIFY_RAISES_ASSERT(RefT r5(m)); |
| VERIFY_RAISES_ASSERT(Ref r6(m.transpose())); |
| VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m)); |
| |
| // Copy constructors shall also never malloc |
| Ref r8 = r1; |
| RefT r9 = r3; |
| |
| // Initializing from a compatible Ref shall also never malloc |
| Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10 = r8, r11 = m; |
| |
| // Initializing from an incompatible Ref will malloc: |
| typedef Eigen::Ref<const MatrixX, Aligned> RefAligned; |
| VERIFY_RAISES_ASSERT(RefAligned r12 = r10); |
| VERIFY_RAISES_ASSERT(Ref r13 = r10); // r10 has more dynamic strides |
| } |
| |
| EIGEN_DECLARE_TEST(nomalloc) { |
| // create some dynamic objects |
| Eigen::MatrixXd M1 = MatrixXd::Random(3, 3); |
| Ref<const MatrixXd> R1 = 2.0 * M1; // Ref requires temporary |
| |
| // from here on prohibit malloc: |
| Eigen::internal::set_is_malloc_allowed(false); |
| |
| // check that our operator new is indeed called: |
| VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3, 3))); |
| CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(nomalloc(Matrix4d())); |
| CALL_SUBTEST_3(nomalloc(Matrix<float, 32, 32>())); |
| |
| // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) |
| CALL_SUBTEST_4(ctms_decompositions<float>()); |
| |
| CALL_SUBTEST_5(test_zerosized()); |
| |
| CALL_SUBTEST_6(test_reference(Matrix<float, 32, 32>())); |
| CALL_SUBTEST_7(test_reference(R1)); |
| CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2)); |
| |
| // freeing is now possible |
| Eigen::internal::set_is_malloc_allowed(true); |
| } |