blob: c9956d3ec5bb948710dbb324eb9c5284c02f4ca7 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
// heap allocation will raise an assert if enabled at runtime
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/Eigenvalues>
#include <Eigen/LU>
#include <Eigen/QR>
#include <Eigen/SVD>
template <typename MatrixType>
void nomalloc(const MatrixType& m) {
/* this test check no dynamic memory allocation are issued with fixed-size matrices
*/
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols);
Scalar s1 = internal::random<Scalar>();
Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2);
VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c)));
VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), (m1.array() * m1.array()).matrix());
VERIFY_IS_APPROX((m1 * m1.transpose()) * m2, m1 * (m1.transpose() * m2));
m2.col(0).noalias() = m1 * m1.col(0);
m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();
m2.row(0).noalias() = m1.row(0) * m1;
m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
VERIFY_IS_APPROX(m2, m2);
m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();
m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
VERIFY_IS_APPROX(m2, m2);
m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();
m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
VERIFY_IS_APPROX(m2, m2);
m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), -1);
m2.template selfadjointView<Upper>().rankUpdate(m1.row(0), -1);
m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0)); // rank-2
// The following fancy matrix-matrix products are not safe yet regarding static allocation
m2.template selfadjointView<Lower>().rankUpdate(m1);
m2 += m2.template triangularView<Upper>() * m1;
m2.template triangularView<Upper>() = m2 * m2;
m1 += m1.template selfadjointView<Lower>() * m2;
VERIFY_IS_APPROX(m2, m2);
}
template <typename Scalar>
void ctms_decompositions() {
const int maxSize = 16;
const int size = 12;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> Matrix;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, 0, maxSize, 1> Vector;
typedef Eigen::Matrix<std::complex<Scalar>, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> ComplexMatrix;
const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
Matrix X(size, size);
const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
const Matrix saA = A.adjoint() * A;
const Vector b(Vector::Random(size));
Vector x(size);
// Cholesky module
Eigen::LLT<Matrix> LLT;
LLT.compute(A);
X = LLT.solve(B);
x = LLT.solve(b);
Eigen::LDLT<Matrix> LDLT;
LDLT.compute(A);
X = LDLT.solve(B);
x = LDLT.solve(b);
// Eigenvalues module
Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;
hessDecomp.compute(complexA);
Eigen::ComplexSchur<ComplexMatrix> cSchur(size);
cSchur.compute(complexA);
Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver;
cEigSolver.compute(complexA);
Eigen::EigenSolver<Matrix> eigSolver;
eigSolver.compute(A);
Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size);
saEigSolver.compute(saA);
Eigen::Tridiagonalization<Matrix> tridiag;
tridiag.compute(saA);
// LU module
Eigen::PartialPivLU<Matrix> ppLU;
ppLU.compute(A);
X = ppLU.solve(B);
x = ppLU.solve(b);
Eigen::FullPivLU<Matrix> fpLU;
fpLU.compute(A);
X = fpLU.solve(B);
x = fpLU.solve(b);
// QR module
Eigen::HouseholderQR<Matrix> hQR;
hQR.compute(A);
X = hQR.solve(B);
x = hQR.solve(b);
Eigen::ColPivHouseholderQR<Matrix> cpQR;
cpQR.compute(A);
X = cpQR.solve(B);
x = cpQR.solve(b);
Eigen::FullPivHouseholderQR<Matrix> fpQR;
fpQR.compute(A);
// FIXME X = fpQR.solve(B);
x = fpQR.solve(b);
// SVD module
Eigen::JacobiSVD<Matrix, ComputeFullU | ComputeFullV> jSVD;
jSVD.compute(A);
}
void test_zerosized() {
// default constructors:
Eigen::MatrixXd A;
Eigen::VectorXd v;
// explicit zero-sized:
Eigen::ArrayXXd A0(0, 0);
Eigen::ArrayXd v0(0);
// assigning empty objects to each other:
A = A0;
v = v0;
}
template <typename MatrixType>
void test_reference(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor };
enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor };
Index rows = m.rows(), cols = m.cols();
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag> MatrixX;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT;
// Dynamic reference:
typedef Eigen::Ref<const MatrixX> Ref;
typedef Eigen::Ref<const MatrixXT> RefT;
Ref r1(m);
Ref r2(m.block(rows / 3, cols / 4, rows / 2, cols / 2));
RefT r3(m.transpose());
RefT r4(m.topLeftCorner(rows / 2, cols / 2).transpose());
VERIFY_RAISES_ASSERT(RefT r5(m));
VERIFY_RAISES_ASSERT(Ref r6(m.transpose()));
VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m));
// Copy constructors shall also never malloc
Ref r8 = r1;
RefT r9 = r3;
// Initializing from a compatible Ref shall also never malloc
Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10 = r8, r11 = m;
// Initializing from an incompatible Ref will malloc:
typedef Eigen::Ref<const MatrixX, Aligned> RefAligned;
VERIFY_RAISES_ASSERT(RefAligned r12 = r10);
VERIFY_RAISES_ASSERT(Ref r13 = r10); // r10 has more dynamic strides
}
EIGEN_DECLARE_TEST(nomalloc) {
// create some dynamic objects
Eigen::MatrixXd M1 = MatrixXd::Random(3, 3);
Ref<const MatrixXd> R1 = 2.0 * M1; // Ref requires temporary
// from here on prohibit malloc:
Eigen::internal::set_is_malloc_allowed(false);
// check that our operator new is indeed called:
VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3, 3)));
CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()));
CALL_SUBTEST_2(nomalloc(Matrix4d()));
CALL_SUBTEST_3(nomalloc(Matrix<float, 32, 32>()));
// Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
CALL_SUBTEST_4(ctms_decompositions<float>());
CALL_SUBTEST_5(test_zerosized());
CALL_SUBTEST_6(test_reference(Matrix<float, 32, 32>()));
CALL_SUBTEST_7(test_reference(R1));
CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2));
// freeing is now possible
Eigen::internal::set_is_malloc_allowed(true);
}