| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template <typename MatrixType> |
| void product_selfadjoint(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType; |
| |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3; |
| VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), v3(rows); |
| RowVectorType r1 = RowVectorType::Random(rows), r2 = RowVectorType::Random(rows); |
| RhsMatrixType m4 = RhsMatrixType::Random(rows, 10); |
| |
| Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(), s3 = internal::random<Scalar>(); |
| |
| m1 = (m1.adjoint() + m1).eval(); |
| |
| // rank2 update |
| m2 = m1.template triangularView<Lower>(); |
| m2.template selfadjointView<Lower>().rankUpdate(v1, v2); |
| VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint() + v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix()); |
| |
| m2 = m1.template triangularView<Upper>(); |
| m2.template selfadjointView<Upper>().rankUpdate(-v1, s2 * v2, s3); |
| VERIFY_IS_APPROX(m2, (m1 + (s3 * (-v1) * (s2 * v2).adjoint() + numext::conj(s3) * (s2 * v2) * (-v1).adjoint())) |
| .template triangularView<Upper>() |
| .toDenseMatrix()); |
| |
| m2 = m1.template triangularView<Upper>(); |
| m2.template selfadjointView<Upper>().rankUpdate(-s2 * r1.adjoint(), r2.adjoint() * s3, s1); |
| VERIFY_IS_APPROX(m2, (m1 + s1 * (-s2 * r1.adjoint()) * (r2.adjoint() * s3).adjoint() + |
| numext::conj(s1) * (r2.adjoint() * s3) * (-s2 * r1.adjoint()).adjoint()) |
| .template triangularView<Upper>() |
| .toDenseMatrix()); |
| |
| if (rows > 1) { |
| m2 = m1.template triangularView<Lower>(); |
| m2.block(1, 1, rows - 1, cols - 1) |
| .template selfadjointView<Lower>() |
| .rankUpdate(v1.tail(rows - 1), v2.head(cols - 1)); |
| m3 = m1; |
| m3.block(1, 1, rows - 1, cols - 1) += |
| v1.tail(rows - 1) * v2.head(cols - 1).adjoint() + v2.head(cols - 1) * v1.tail(rows - 1).adjoint(); |
| VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix()); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(product_selfadjoint) { |
| int s = 0; |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(product_selfadjoint(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(product_selfadjoint(Matrix<float, 2, 2>())); |
| CALL_SUBTEST_3(product_selfadjoint(Matrix3d())); |
| |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2); |
| CALL_SUBTEST_4(product_selfadjoint(MatrixXcf(s, s))); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2); |
| CALL_SUBTEST_5(product_selfadjoint(MatrixXcd(s, s))); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE); |
| CALL_SUBTEST_6(product_selfadjoint(MatrixXd(s, s))); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE); |
| CALL_SUBTEST_7(product_selfadjoint(Matrix<float, Dynamic, Dynamic, RowMajor>(s, s))); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |
| } |