| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/QR> |
| #include "solverbase.h" |
| |
| template <typename MatrixType> |
| void qr(const MatrixType& m) { |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType; |
| |
| MatrixType a = MatrixType::Random(rows, cols); |
| HouseholderQR<MatrixType> qrOfA(a); |
| |
| MatrixQType q = qrOfA.householderQ(); |
| VERIFY_IS_UNITARY(q); |
| |
| MatrixType r = qrOfA.matrixQR().template triangularView<Upper>(); |
| VERIFY_IS_APPROX(a, qrOfA.householderQ() * r); |
| } |
| |
| template <typename MatrixType, int Cols2> |
| void qr_fixedsize() { |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; |
| typedef typename MatrixType::Scalar Scalar; |
| Matrix<Scalar, Rows, Cols> m1 = Matrix<Scalar, Rows, Cols>::Random(); |
| HouseholderQR<Matrix<Scalar, Rows, Cols> > qr(m1); |
| |
| Matrix<Scalar, Rows, Cols> r = qr.matrixQR(); |
| // FIXME need better way to construct trapezoid |
| for (int i = 0; i < Rows; i++) |
| for (int j = 0; j < Cols; j++) |
| if (i > j) r(i, j) = Scalar(0); |
| |
| VERIFY_IS_APPROX(m1, qr.householderQ() * r); |
| |
| check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(m1, qr, Rows, Cols, Cols2); |
| } |
| |
| template <typename MatrixType> |
| void qr_invertible() { |
| using std::abs; |
| using std::log; |
| using std::max; |
| using std::pow; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef typename MatrixType::Scalar Scalar; |
| |
| STATIC_CHECK((internal::is_same<typename HouseholderQR<MatrixType>::StorageIndex, int>::value)); |
| |
| int size = internal::random<int>(10, 50); |
| |
| MatrixType m1(size, size), m2(size, size), m3(size, size); |
| m1 = MatrixType::Random(size, size); |
| |
| if (internal::is_same<RealScalar, float>::value) { |
| // let's build a matrix more stable to inverse |
| MatrixType a = MatrixType::Random(size, size * 4); |
| m1 += a * a.adjoint(); |
| } |
| |
| HouseholderQR<MatrixType> qr(m1); |
| |
| check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size); |
| |
| // now construct a matrix with prescribed determinant |
| m1.setZero(); |
| for (int i = 0; i < size; i++) m1(i, i) = internal::random<Scalar>(); |
| Scalar det = m1.diagonal().prod(); |
| RealScalar absdet = abs(det); |
| m3 = qr.householderQ(); // get a unitary |
| m1 = m3 * m1 * m3.adjoint(); |
| qr.compute(m1); |
| VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant()); |
| // This test is tricky if the determinant becomes too small. |
| // Since we generate random numbers with magnitude range [0,1], the average determinant is 0.5^size |
| RealScalar tol = |
| numext::maxi(RealScalar(pow(0.5, size)), numext::maxi<RealScalar>(abs(absdet), abs(qr.absDeterminant()))); |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(det - qr.determinant()), tol); |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(absdet - qr.absDeterminant()), tol); |
| } |
| |
| template <typename MatrixType> |
| void qr_verify_assert() { |
| MatrixType tmp; |
| |
| HouseholderQR<MatrixType> qr; |
| VERIFY_RAISES_ASSERT(qr.matrixQR()) |
| VERIFY_RAISES_ASSERT(qr.solve(tmp)) |
| VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp)) |
| VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp)) |
| VERIFY_RAISES_ASSERT(qr.householderQ()) |
| VERIFY_RAISES_ASSERT(qr.determinant()) |
| VERIFY_RAISES_ASSERT(qr.absDeterminant()) |
| VERIFY_RAISES_ASSERT(qr.logAbsDeterminant()) |
| } |
| |
| EIGEN_DECLARE_TEST(qr) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( |
| qr(MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_2(qr(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); |
| CALL_SUBTEST_3((qr_fixedsize<Matrix<float, 3, 4>, 2>())); |
| CALL_SUBTEST_4((qr_fixedsize<Matrix<double, 6, 2>, 4>())); |
| CALL_SUBTEST_5((qr_fixedsize<Matrix<double, 2, 5>, 7>())); |
| CALL_SUBTEST_11(qr(Matrix<float, 1, 1>())); |
| } |
| |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(qr_invertible<MatrixXf>()); |
| CALL_SUBTEST_6(qr_invertible<MatrixXd>()); |
| CALL_SUBTEST_7(qr_invertible<MatrixXcf>()); |
| CALL_SUBTEST_8(qr_invertible<MatrixXcd>()); |
| } |
| |
| CALL_SUBTEST_9(qr_verify_assert<Matrix3f>()); |
| CALL_SUBTEST_10(qr_verify_assert<Matrix3d>()); |
| CALL_SUBTEST_1(qr_verify_assert<MatrixXf>()); |
| CALL_SUBTEST_6(qr_verify_assert<MatrixXd>()); |
| CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>()); |
| CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>()); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20)); |
| } |