| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // This unit test cannot be easily written to work with EIGEN_DEFAULT_TO_ROW_MAJOR |
| #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR |
| #undef EIGEN_DEFAULT_TO_ROW_MAJOR |
| #endif |
| |
| static long int nb_temporaries; |
| |
| inline void on_temporary_creation() { |
| // here's a great place to set a breakpoint when debugging failures in this test! |
| nb_temporaries++; |
| } |
| |
| #define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN \ |
| { on_temporary_creation(); } |
| |
| #include "main.h" |
| #include <Eigen/SparseCore> |
| |
| #define VERIFY_EVALUATION_COUNT(XPR, N) \ |
| { \ |
| nb_temporaries = 0; \ |
| CALL_SUBTEST(XPR); \ |
| if (nb_temporaries != N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ |
| VERIFY((#XPR) && nb_temporaries == N); \ |
| } |
| |
| template <typename PlainObjectType> |
| void check_const_correctness(const PlainObjectType &) { |
| // verify that ref-to-const don't have LvalueBit |
| typedef std::add_const_t<PlainObjectType> ConstPlainObjectType; |
| VERIFY(!(internal::traits<Ref<ConstPlainObjectType> >::Flags & LvalueBit)); |
| VERIFY(!(internal::traits<Ref<ConstPlainObjectType, Aligned> >::Flags & LvalueBit)); |
| VERIFY(!(Ref<ConstPlainObjectType>::Flags & LvalueBit)); |
| VERIFY(!(Ref<ConstPlainObjectType, Aligned>::Flags & LvalueBit)); |
| } |
| |
| template <typename B> |
| EIGEN_DONT_INLINE void call_ref_1(Ref<SparseMatrix<float> > a, const B &b) { |
| VERIFY_IS_EQUAL(a.toDense(), b.toDense()); |
| } |
| |
| template <typename B> |
| EIGEN_DONT_INLINE void call_ref_2(const Ref<const SparseMatrix<float> > &a, const B &b) { |
| VERIFY_IS_EQUAL(a.toDense(), b.toDense()); |
| } |
| |
| template <typename B> |
| EIGEN_DONT_INLINE void call_ref_3(const Ref<const SparseMatrix<float>, StandardCompressedFormat> &a, const B &b) { |
| VERIFY(a.isCompressed()); |
| VERIFY_IS_EQUAL(a.toDense(), b.toDense()); |
| } |
| |
| template <typename B> |
| EIGEN_DONT_INLINE void call_ref_4(Ref<SparseVector<float> > a, const B &b) { |
| VERIFY_IS_EQUAL(a.toDense(), b.toDense()); |
| } |
| |
| template <typename B> |
| EIGEN_DONT_INLINE void call_ref_5(const Ref<const SparseVector<float> > &a, const B &b) { |
| VERIFY_IS_EQUAL(a.toDense(), b.toDense()); |
| } |
| |
| void call_ref() { |
| SparseMatrix<float> A = MatrixXf::Random(10, 10).sparseView(0.5, 1); |
| SparseMatrix<float, RowMajor> B = MatrixXf::Random(10, 10).sparseView(0.5, 1); |
| SparseMatrix<float> C = MatrixXf::Random(10, 10).sparseView(0.5, 1); |
| C.reserve(VectorXi::Constant(C.outerSize(), 2)); |
| const SparseMatrix<float> &Ac(A); |
| Block<SparseMatrix<float> > Ab(A, 0, 1, 3, 3); |
| const Block<SparseMatrix<float> > Abc(A, 0, 1, 3, 3); |
| SparseVector<float> vc = VectorXf::Random(10).sparseView(0.5, 1); |
| SparseVector<float, RowMajor> vr = VectorXf::Random(10).sparseView(0.5, 1); |
| SparseMatrix<float> AA = A * A; |
| |
| VERIFY_EVALUATION_COUNT(call_ref_1(A, A), 0); |
| // VERIFY_EVALUATION_COUNT( call_ref_1(Ac, Ac), 0); // does not compile on purpose |
| VERIFY_EVALUATION_COUNT(call_ref_2(A, A), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_3(A, A), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_2(A.transpose(), A.transpose()), 1); |
| VERIFY_EVALUATION_COUNT(call_ref_3(A.transpose(), A.transpose()), 1); |
| VERIFY_EVALUATION_COUNT(call_ref_2(Ac, Ac), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_3(Ac, Ac), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_2(A + A, 2 * Ac), 1); |
| VERIFY_EVALUATION_COUNT(call_ref_3(A + A, 2 * Ac), 1); |
| VERIFY_EVALUATION_COUNT(call_ref_2(B, B), 1); |
| VERIFY_EVALUATION_COUNT(call_ref_3(B, B), 1); |
| VERIFY_EVALUATION_COUNT(call_ref_2(B.transpose(), B.transpose()), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_3(B.transpose(), B.transpose()), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_2(A * A, AA), 3); |
| VERIFY_EVALUATION_COUNT(call_ref_3(A * A, AA), 3); |
| |
| VERIFY(!C.isCompressed()); |
| VERIFY_EVALUATION_COUNT(call_ref_3(C, C), 1); |
| |
| Ref<SparseMatrix<float> > Ar(A); |
| VERIFY_IS_APPROX(Ar + Ar, A + A); |
| VERIFY_EVALUATION_COUNT(call_ref_1(Ar, A), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_2(Ar, A), 0); |
| |
| Ref<SparseMatrix<float, RowMajor> > Br(B); |
| VERIFY_EVALUATION_COUNT(call_ref_1(Br.transpose(), Br.transpose()), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_2(Br, Br), 1); |
| VERIFY_EVALUATION_COUNT(call_ref_2(Br.transpose(), Br.transpose()), 0); |
| |
| Ref<const SparseMatrix<float> > Arc(A); |
| // VERIFY_EVALUATION_COUNT( call_ref_1(Arc, Arc), 0); // does not compile on purpose |
| VERIFY_EVALUATION_COUNT(call_ref_2(Arc, Arc), 0); |
| |
| VERIFY_EVALUATION_COUNT(call_ref_2(A.middleCols(1, 3), A.middleCols(1, 3)), 0); |
| |
| VERIFY_EVALUATION_COUNT(call_ref_2(A.col(2), A.col(2)), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_2(vc, vc), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_2(vr.transpose(), vr.transpose()), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_2(vr, vr.transpose()), 0); |
| |
| VERIFY_EVALUATION_COUNT(call_ref_2(A.block(1, 1, 3, 3), A.block(1, 1, 3, 3)), |
| 1); // should be 0 (allocate starts/nnz only) |
| |
| VERIFY_EVALUATION_COUNT(call_ref_4(vc, vc), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_4(vr, vr.transpose()), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_5(vc, vc), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_5(vr, vr.transpose()), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_4(A.col(2), A.col(2)), 0); |
| VERIFY_EVALUATION_COUNT(call_ref_5(A.col(2), A.col(2)), 0); |
| // VERIFY_EVALUATION_COUNT( call_ref_4(A.row(2), A.row(2).transpose()), 1); // does not compile on purpose |
| VERIFY_EVALUATION_COUNT(call_ref_5(A.row(2), A.row(2).transpose()), 1); |
| } |
| |
| EIGEN_DECLARE_TEST(sparse_ref) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(check_const_correctness(SparseMatrix<float>())); |
| CALL_SUBTEST_1(check_const_correctness(SparseMatrix<double, RowMajor>())); |
| CALL_SUBTEST_2(call_ref()); |
| |
| CALL_SUBTEST_3(check_const_correctness(SparseVector<float>())); |
| CALL_SUBTEST_3(check_const_correctness(SparseVector<double, RowMajor>())); |
| } |
| } |