blob: aac7248e0e0b5defa227815124a2f8478c949448 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifdef EIGEN_TEST_PART_1
#define EIGEN_UNALIGNED_VECTORIZE 1
#endif
#ifdef EIGEN_TEST_PART_2
#define EIGEN_UNALIGNED_VECTORIZE 0
#endif
#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
#undef EIGEN_DEFAULT_TO_ROW_MAJOR
#endif
#define EIGEN_DEBUG_ASSIGN
#include "main.h"
#include <typeinfo>
// Disable "ignoring attributes on template argument"
// for packet_traits<Packet*>
// => The only workaround would be to wrap _m128 and the likes
// within wrappers.
#if EIGEN_GNUC_STRICT_AT_LEAST(6, 0, 0)
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
using internal::demangle_flags;
using internal::demangle_traversal;
using internal::demangle_unrolling;
template <typename Dst, typename Src>
bool test_assign(const Dst&, const Src&, int traversal, int unrolling) {
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst, Src);
typedef internal::copy_using_evaluator_traits<internal::evaluator<Dst>, internal::evaluator<Src>,
internal::assign_op<typename Dst::Scalar, typename Src::Scalar> >
traits;
// If traversal or unrolling are negative, ignore.
bool res = traversal > -1 ? traits::Traversal == traversal : true;
if (unrolling > -1) {
if (unrolling == InnerUnrolling + CompleteUnrolling) {
res = res && (int(traits::Unrolling) == InnerUnrolling || int(traits::Unrolling) == CompleteUnrolling);
} else {
res = res && int(traits::Unrolling) == unrolling;
}
}
if (!res) {
std::cerr << "Src: " << demangle_flags(Src::Flags) << std::endl;
std::cerr << " " << demangle_flags(internal::evaluator<Src>::Flags) << std::endl;
std::cerr << "Dst: " << demangle_flags(Dst::Flags) << std::endl;
std::cerr << " " << demangle_flags(internal::evaluator<Dst>::Flags) << std::endl;
traits::debug();
std::cerr << " Expected Traversal == " << demangle_traversal(traversal) << " got "
<< demangle_traversal(traits::Traversal) << "\n";
std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling) << " got "
<< demangle_unrolling(traits::Unrolling) << "\n";
}
return res;
}
template <typename Dst, typename Src>
bool test_assign(int traversal, int unrolling) {
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst, Src);
typedef internal::copy_using_evaluator_traits<internal::evaluator<Dst>, internal::evaluator<Src>,
internal::assign_op<typename Dst::Scalar, typename Src::Scalar> >
traits;
bool res = traits::Traversal == traversal && traits::Unrolling == unrolling;
if (!res) {
std::cerr << "Src: " << demangle_flags(Src::Flags) << std::endl;
std::cerr << " " << demangle_flags(internal::evaluator<Src>::Flags) << std::endl;
std::cerr << "Dst: " << demangle_flags(Dst::Flags) << std::endl;
std::cerr << " " << demangle_flags(internal::evaluator<Dst>::Flags) << std::endl;
traits::debug();
std::cerr << " Expected Traversal == " << demangle_traversal(traversal) << " got "
<< demangle_traversal(traits::Traversal) << "\n";
std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling) << " got "
<< demangle_unrolling(traits::Unrolling) << "\n";
}
return res;
}
template <typename Xpr>
bool test_redux(const Xpr&, int traversal, int unrolling) {
typedef typename Xpr::Scalar Scalar;
typedef internal::redux_traits<internal::scalar_sum_op<Scalar, Scalar>, internal::redux_evaluator<Xpr> > traits;
bool res = traits::Traversal == traversal && traits::Unrolling == unrolling;
if (!res) {
std::cerr << demangle_flags(Xpr::Flags) << std::endl;
std::cerr << demangle_flags(internal::evaluator<Xpr>::Flags) << std::endl;
traits::debug();
std::cerr << " Expected Traversal == " << demangle_traversal(traversal) << " got "
<< demangle_traversal(traits::Traversal) << "\n";
std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling) << " got "
<< demangle_unrolling(traits::Unrolling) << "\n";
}
return res;
}
template <typename Scalar, bool Enable = internal::packet_traits<Scalar>::Vectorizable>
struct vectorization_logic {
typedef internal::packet_traits<Scalar> PacketTraits;
typedef typename internal::packet_traits<Scalar>::type PacketType;
typedef typename internal::unpacket_traits<PacketType>::half HalfPacketType;
enum {
PacketSize = internal::unpacket_traits<PacketType>::size,
HalfPacketSize = internal::unpacket_traits<HalfPacketType>::size
};
static void run() {
typedef Matrix<Scalar, PacketSize, 1> Vector1;
typedef Matrix<Scalar, Dynamic, 1> VectorX;
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixXX;
typedef Matrix<Scalar, PacketSize, PacketSize> Matrix11;
typedef Matrix<Scalar, (Matrix11::Flags & RowMajorBit) ? 8 : 2 * PacketSize,
(Matrix11::Flags & RowMajorBit) ? 2 * PacketSize : 8>
Matrix22;
typedef Matrix<Scalar, (Matrix11::Flags & RowMajorBit) ? 16 : 4 * PacketSize,
(Matrix11::Flags & RowMajorBit) ? 4 * PacketSize : 16>
Matrix44;
typedef Matrix<Scalar, (Matrix11::Flags & RowMajorBit) ? 16 : 4 * PacketSize,
(Matrix11::Flags & RowMajorBit) ? 4 * PacketSize : 16,
DontAlign | EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION>
Matrix44u;
typedef Matrix<Scalar, 4 * PacketSize, 4 * PacketSize, ColMajor> Matrix44c;
typedef Matrix<Scalar, 4 * PacketSize, 4 * PacketSize, RowMajor> Matrix44r;
typedef Matrix<Scalar,
(PacketSize == 16 ? 8
: PacketSize == 8 ? 4
: PacketSize == 4 ? 2
: PacketSize == 2 ? 1
: /*PacketSize==1 ?*/ 1),
(PacketSize == 16 ? 2
: PacketSize == 8 ? 2
: PacketSize == 4 ? 2
: PacketSize == 2 ? 2
: /*PacketSize==1 ?*/ 1)>
Matrix1;
typedef Matrix<Scalar,
(PacketSize == 16 ? 8
: PacketSize == 8 ? 4
: PacketSize == 4 ? 2
: PacketSize == 2 ? 1
: /*PacketSize==1 ?*/ 1),
(PacketSize == 16 ? 2
: PacketSize == 8 ? 2
: PacketSize == 4 ? 2
: PacketSize == 2 ? 2
: /*PacketSize==1 ?*/ 1),
DontAlign | ((Matrix1::Flags & RowMajorBit) ? RowMajor : ColMajor)>
Matrix1u;
// this type is made such that it can only be vectorized when viewed as a linear 1D vector
typedef Matrix<Scalar,
(PacketSize == 16 ? 4
: PacketSize == 8 ? 4
: PacketSize == 4 ? 6
: PacketSize == 2 ? ((Matrix11::Flags & RowMajorBit) ? 2 : 3)
: /*PacketSize==1 ?*/ 1),
(PacketSize == 16 ? 12
: PacketSize == 8 ? 6
: PacketSize == 4 ? 2
: PacketSize == 2 ? ((Matrix11::Flags & RowMajorBit) ? 3 : 2)
: /*PacketSize==1 ?*/ 3)>
Matrix3;
#if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT
VERIFY(test_assign(Vector1(), Vector1(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Vector1(), Vector1() + Vector1(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Vector1(), Vector1().cwiseProduct(Vector1()), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Vector1(), Vector1().template cast<Scalar>(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Matrix44(), Matrix44() + Matrix44(), InnerVectorizedTraversal, InnerUnrolling));
VERIFY(test_assign(Matrix44u(), Matrix44() + Matrix44(),
EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : LinearTraversal,
EIGEN_UNALIGNED_VECTORIZE ? InnerUnrolling : NoUnrolling));
VERIFY(test_assign(Matrix1(), Matrix1() + Matrix1(),
(int(Matrix1::InnerSizeAtCompileTime) % int(PacketSize)) == 0 ? InnerVectorizedTraversal
: LinearVectorizedTraversal,
CompleteUnrolling));
VERIFY(test_assign(Matrix1u(), Matrix1() + Matrix1(),
EIGEN_UNALIGNED_VECTORIZE
? ((int(Matrix1::InnerSizeAtCompileTime) % int(PacketSize)) == 0 ? InnerVectorizedTraversal
: LinearVectorizedTraversal)
: LinearTraversal,
CompleteUnrolling));
VERIFY(test_assign(Matrix44c().col(1), Matrix44c().col(2) + Matrix44c().col(3), InnerVectorizedTraversal,
CompleteUnrolling));
VERIFY(test_assign(Matrix44r().row(2), Matrix44r().row(1) + Matrix44r().row(1), InnerVectorizedTraversal,
CompleteUnrolling));
if (PacketSize > 1) {
typedef Matrix<Scalar, 3, 3, ColMajor> Matrix33c;
typedef Matrix<Scalar, 3, 1, ColMajor> Vector3;
VERIFY(
test_assign(Matrix33c().row(2), Matrix33c().row(1) + Matrix33c().row(1), LinearTraversal, CompleteUnrolling));
// Vectorization depends on too many factors - ignore.
VERIFY(test_assign(Vector3(), Vector3() + Vector3(), -1, CompleteUnrolling));
VERIFY(test_assign(Matrix3(), Matrix3().cwiseProduct(Matrix3()), LinearVectorizedTraversal, CompleteUnrolling));
// Vectorization depends on too many factors - ignore.
VERIFY(
test_assign(Matrix<Scalar, 17, 17>(), Matrix<Scalar, 17, 17>() + Matrix<Scalar, 17, 17>(), -1, NoUnrolling));
VERIFY(test_assign(Matrix11(), Matrix11() + Matrix11(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Matrix11(),
Matrix<Scalar, 21, 21>().template block<PacketSize, PacketSize>(2, 3) +
Matrix<Scalar, 21, 21>().template block<PacketSize, PacketSize>(3, 2),
(EIGEN_UNALIGNED_VECTORIZE) ? InnerVectorizedTraversal : DefaultTraversal,
CompleteUnrolling | InnerUnrolling));
VERIFY(test_assign(Vector1(), Matrix11() * Vector1(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Matrix11(), Matrix11().lazyProduct(Matrix11()), InnerVectorizedTraversal,
InnerUnrolling + CompleteUnrolling));
}
VERIFY(test_redux(Vector1(), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_redux(Vector1().array() * Vector1().array(), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_redux((Vector1().array() * Vector1().array()).col(0), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_redux(Matrix<Scalar, PacketSize, 3>(), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_redux(Matrix3(), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_redux(Matrix44(), LinearVectorizedTraversal, NoUnrolling));
if (PacketSize > 1) {
VERIFY(test_redux(Matrix44().template block < (Matrix1::Flags & RowMajorBit) ? 4 : PacketSize,
(Matrix1::Flags & RowMajorBit) ? PacketSize : 4 > (1, 2), SliceVectorizedTraversal,
CompleteUnrolling));
VERIFY(test_redux(Matrix44().template block < (Matrix1::Flags & RowMajorBit) ? 2 : PacketSize,
(Matrix1::Flags & RowMajorBit) ? PacketSize : 2 > (1, 2), DefaultTraversal, CompleteUnrolling));
}
VERIFY(
test_redux(Matrix44c().template block<2 * PacketSize, 1>(1, 2), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(
test_redux(Matrix44r().template block<1, 2 * PacketSize>(2, 1), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY((test_assign<Map<Matrix22, AlignedMax, OuterStride<3 * PacketSize> >, Matrix22>(InnerVectorizedTraversal,
CompleteUnrolling)));
VERIFY((test_assign<
Map<Matrix<Scalar, internal::plain_enum_max(2, PacketSize), internal::plain_enum_max(2, PacketSize)>,
AlignedMax, InnerStride<3 * PacketSize> >,
Matrix<Scalar, internal::plain_enum_max(2, PacketSize), internal::plain_enum_max(2, PacketSize)> >(
DefaultTraversal, PacketSize >= 8 ? InnerUnrolling : CompleteUnrolling)));
VERIFY((test_assign(Matrix11(),
Matrix<Scalar, PacketSize, internal::plain_enum_min(2, PacketSize)>() *
Matrix<Scalar, internal::plain_enum_min(2, PacketSize), PacketSize>(),
InnerVectorizedTraversal, CompleteUnrolling)));
#endif
VERIFY(test_assign(MatrixXX(10, 10), MatrixXX(20, 20).block(10, 10, 2, 3), SliceVectorizedTraversal, NoUnrolling));
VERIFY(test_redux(VectorX(10), LinearVectorizedTraversal, NoUnrolling));
}
};
template <typename Scalar>
struct vectorization_logic<Scalar, false> {
static void run() {}
};
template <typename Scalar, bool Enable = !internal::is_same<
typename internal::unpacket_traits<typename internal::packet_traits<Scalar>::type>::half,
typename internal::packet_traits<Scalar>::type>::value>
struct vectorization_logic_half {
typedef internal::packet_traits<Scalar> PacketTraits;
typedef typename internal::unpacket_traits<typename internal::packet_traits<Scalar>::type>::half PacketType;
static constexpr int PacketSize = internal::unpacket_traits<PacketType>::size;
static void run() {
// Some half-packets have a byte size < EIGEN_MIN_ALIGN_BYTES (e.g. Packet2f),
// which causes many of these tests to fail since they don't vectorize if
// EIGEN_UNALIGNED_VECTORIZE is 0 (the matrix is assumed unaligned).
// Adjust the matrix sizes to account for these alignment issues.
constexpr int PacketBytes = sizeof(Scalar) * PacketSize;
constexpr int MinVSize = int(EIGEN_UNALIGNED_VECTORIZE) ? PacketSize
: PacketBytes >= EIGEN_MIN_ALIGN_BYTES
? PacketSize
: (EIGEN_MIN_ALIGN_BYTES + sizeof(Scalar) - 1) / sizeof(Scalar);
typedef Matrix<Scalar, MinVSize, 1> Vector1;
typedef Matrix<Scalar, MinVSize, MinVSize> Matrix11;
typedef Matrix<Scalar, 5 * MinVSize, 7, ColMajor> Matrix57;
typedef Matrix<Scalar, 3 * MinVSize, 5, ColMajor> Matrix35;
typedef Matrix<Scalar, 5 * MinVSize, 7, DontAlign | ColMajor> Matrix57u;
typedef Matrix<Scalar,
(PacketSize == 16 ? 8
: PacketSize == 8 ? 4
: PacketSize == 4 ? 2
: PacketSize == 2 ? 1
: /*PacketSize==1 ?*/ 1),
(PacketSize == 16 ? 2
: PacketSize == 8 ? 2
: PacketSize == 4 ? 2
: PacketSize == 2 ? 2
: /*PacketSize==1 ?*/ 1)>
Matrix1;
typedef Matrix<Scalar,
(PacketSize == 16 ? 8
: PacketSize == 8 ? 4
: PacketSize == 4 ? 2
: PacketSize == 2 ? 1
: /*PacketSize==1 ?*/ 1),
(PacketSize == 16 ? 2
: PacketSize == 8 ? 2
: PacketSize == 4 ? 2
: PacketSize == 2 ? 2
: /*PacketSize==1 ?*/ 1),
DontAlign | ((Matrix1::Flags & RowMajorBit) ? RowMajor : ColMajor)>
Matrix1u;
// this type is made such that it can only be vectorized when viewed as a linear 1D vector
typedef Matrix<Scalar,
(MinVSize == 16 ? 4
: MinVSize == 8 ? 4
: MinVSize == 4 ? 6
: MinVSize == 2 ? ((Matrix11::Flags & RowMajorBit) ? 2 : 3)
: /*PacketSize==1 ?*/ 1),
(MinVSize == 16 ? 12
: MinVSize == 8 ? 6
: MinVSize == 4 ? 2
: MinVSize == 2 ? ((Matrix11::Flags & RowMajorBit) ? 3 : 2)
: /*PacketSize==1 ?*/ 3)>
Matrix3;
#if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT
VERIFY(test_assign(Vector1(), Vector1(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Vector1(), Vector1() + Vector1(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Vector1(), Vector1().template segment<MinVSize>(0).derived(),
EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : LinearVectorizedTraversal,
CompleteUnrolling));
VERIFY(test_assign(Vector1(), Scalar(2.1) * Vector1() - Vector1(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(
Vector1(),
(Scalar(2.1) * Vector1().template segment<MinVSize>(0) - Vector1().template segment<MinVSize>(0)).derived(),
EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Vector1(), Vector1().cwiseProduct(Vector1()), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Vector1(), Vector1().template cast<Scalar>(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Matrix57(), Matrix57() + Matrix57(), InnerVectorizedTraversal, InnerUnrolling));
VERIFY(test_assign(Matrix57u(), Matrix57() + Matrix57(),
EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : LinearTraversal,
EIGEN_UNALIGNED_VECTORIZE ? InnerUnrolling : NoUnrolling));
VERIFY(test_assign(Matrix1u(), Matrix1() + Matrix1(),
EIGEN_UNALIGNED_VECTORIZE
? ((int(Matrix1::InnerSizeAtCompileTime) % int(PacketSize)) == 0 ? InnerVectorizedTraversal
: LinearVectorizedTraversal)
: LinearTraversal,
CompleteUnrolling));
if (PacketSize > 1) {
typedef Matrix<Scalar, 3, 3, ColMajor> Matrix33c;
VERIFY(
test_assign(Matrix33c().row(2), Matrix33c().row(1) + Matrix33c().row(1), LinearTraversal, CompleteUnrolling));
// Unrolling depends on read costs and unroll limits, which vary - ignore.
VERIFY(test_assign(Matrix3(), Matrix3().cwiseQuotient(Matrix3()),
PacketTraits::HasDiv ? LinearVectorizedTraversal : LinearTraversal, -1));
VERIFY(test_assign(Matrix<Scalar, 17, 17>(), Matrix<Scalar, 17, 17>() + Matrix<Scalar, 17, 17>(),
sizeof(Scalar) == 16
? InnerVectorizedTraversal
: (EIGEN_UNALIGNED_VECTORIZE ? LinearVectorizedTraversal : LinearTraversal),
NoUnrolling));
VERIFY(test_assign(Matrix11(),
Matrix<Scalar, 17, 17>().template block<MinVSize, MinVSize>(2, 3) +
Matrix<Scalar, 17, 17>().template block<MinVSize, MinVSize>(8, 4),
EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : DefaultTraversal,
InnerUnrolling + CompleteUnrolling));
VERIFY(test_assign(Vector1(), Matrix11() * Vector1(), InnerVectorizedTraversal, CompleteUnrolling));
VERIFY(test_assign(Matrix11(), Matrix11().lazyProduct(Matrix11()), InnerVectorizedTraversal,
InnerUnrolling + CompleteUnrolling));
}
VERIFY(test_redux(Vector1(), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_redux(Matrix<Scalar, MinVSize, 3>(), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_redux(Matrix3(), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_redux(Matrix35(), LinearVectorizedTraversal, CompleteUnrolling));
VERIFY(test_redux(Matrix57().template block < PacketSize == 1 ? 2 : PacketSize, 3 > (1, 0),
SliceVectorizedTraversal, CompleteUnrolling));
if (PacketSize > 1) {
VERIFY(test_redux(Matrix57().template block<PacketSize, 2>(1, 0), DefaultTraversal, CompleteUnrolling));
}
VERIFY((test_assign<
Map<Matrix<Scalar, internal::plain_enum_max(2, PacketSize), internal::plain_enum_max(2, PacketSize)>,
AlignedMax, InnerStride<3 * PacketSize> >,
Matrix<Scalar, internal::plain_enum_max(2, PacketSize), internal::plain_enum_max(2, PacketSize)> >(
DefaultTraversal, PacketSize > 4 ? InnerUnrolling : CompleteUnrolling)));
VERIFY((test_assign(Matrix57(), Matrix<Scalar, 5 * MinVSize, 3>() * Matrix<Scalar, 3, 7>(),
InnerVectorizedTraversal, InnerUnrolling + CompleteUnrolling)));
#endif
}
};
template <typename Scalar>
struct vectorization_logic_half<Scalar, false> {
static void run() {}
};
EIGEN_DECLARE_TEST(vectorization_logic) {
#ifdef EIGEN_VECTORIZE
CALL_SUBTEST(vectorization_logic<int>::run());
CALL_SUBTEST(vectorization_logic<float>::run());
CALL_SUBTEST(vectorization_logic<double>::run());
CALL_SUBTEST(vectorization_logic<std::complex<float> >::run());
CALL_SUBTEST(vectorization_logic<std::complex<double> >::run());
CALL_SUBTEST(vectorization_logic_half<int>::run());
CALL_SUBTEST(vectorization_logic_half<float>::run());
CALL_SUBTEST(vectorization_logic_half<double>::run());
CALL_SUBTEST(vectorization_logic_half<std::complex<float> >::run());
CALL_SUBTEST(vectorization_logic_half<std::complex<double> >::run());
if (internal::packet_traits<float>::Vectorizable) {
VERIFY(test_assign(Matrix<float, 3, 3>(), Matrix<float, 3, 3>() + Matrix<float, 3, 3>(),
internal::packet_traits<float>::Vectorizable && EIGEN_UNALIGNED_VECTORIZE
? LinearVectorizedTraversal
: LinearTraversal,
CompleteUnrolling));
VERIFY(test_redux(Matrix<float, 5, 2>(),
internal::packet_traits<float>::Vectorizable && EIGEN_UNALIGNED_VECTORIZE
? LinearVectorizedTraversal
: LinearTraversal,
CompleteUnrolling));
}
if (internal::packet_traits<double>::Vectorizable) {
VERIFY(test_assign(Matrix<double, 3, 3>(), Matrix<double, 3, 3>() + Matrix<double, 3, 3>(),
internal::packet_traits<double>::Vectorizable && EIGEN_UNALIGNED_VECTORIZE
? LinearVectorizedTraversal
: LinearTraversal,
CompleteUnrolling));
VERIFY(test_redux(Matrix<double, 7, 3>(),
internal::packet_traits<double>::Vectorizable && EIGEN_UNALIGNED_VECTORIZE
? LinearVectorizedTraversal
: LinearTraversal,
CompleteUnrolling));
}
#endif // EIGEN_VECTORIZE
}