| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_DOT_H | 
 | #define EIGEN_DOT_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot | 
 | // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE | 
 | // looking at the static assertions. Thus this is a trick to get better compile errors. | 
 | template <typename T, typename U, | 
 |           bool NeedToTranspose = T::IsVectorAtCompileTime && U::IsVectorAtCompileTime && | 
 |                                  ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) || | 
 |                                   (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))> | 
 | struct dot_nocheck { | 
 |   typedef scalar_conj_product_op<typename traits<T>::Scalar, typename traits<U>::Scalar> conj_prod; | 
 |   typedef typename conj_prod::result_type ResScalar; | 
 |   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) { | 
 |     return a.template binaryExpr<conj_prod>(b).sum(); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T, typename U> | 
 | struct dot_nocheck<T, U, true> { | 
 |   typedef scalar_conj_product_op<typename traits<T>::Scalar, typename traits<U>::Scalar> conj_prod; | 
 |   typedef typename conj_prod::result_type ResScalar; | 
 |   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) { | 
 |     return a.transpose().template binaryExpr<conj_prod>(b).sum(); | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | /** \fn MatrixBase::dot | 
 |  * \returns the dot product of *this with other. | 
 |  * | 
 |  * \only_for_vectors | 
 |  * | 
 |  * \note If the scalar type is complex numbers, then this function returns the hermitian | 
 |  * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the | 
 |  * second variable. | 
 |  * | 
 |  * \sa squaredNorm(), norm() | 
 |  */ | 
 | template <typename Derived> | 
 | template <typename OtherDerived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
 |     typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar, | 
 |                                   typename internal::traits<OtherDerived>::Scalar>::ReturnType | 
 |     MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) | 
 |   EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) | 
 |   EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived, OtherDerived) | 
 | #if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG)) | 
 |   EIGEN_CHECK_BINARY_COMPATIBILIY( | 
 |       Eigen::internal::scalar_conj_product_op<Scalar EIGEN_COMMA typename OtherDerived::Scalar>, Scalar, | 
 |       typename OtherDerived::Scalar); | 
 | #endif | 
 |  | 
 |   eigen_assert(size() == other.size()); | 
 |  | 
 |   return internal::dot_nocheck<Derived, OtherDerived>::run(*this, other); | 
 | } | 
 |  | 
 | //---------- implementation of L2 norm and related functions ---------- | 
 |  | 
 | /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the squared Frobenius norm. | 
 |  * In both cases, it consists in the sum of the square of all the matrix entries. | 
 |  * For vectors, this is also equals to the dot product of \c *this with itself. | 
 |  * | 
 |  * \sa dot(), norm(), lpNorm() | 
 |  */ | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real | 
 | MatrixBase<Derived>::squaredNorm() const { | 
 |   return numext::real((*this).cwiseAbs2().sum()); | 
 | } | 
 |  | 
 | /** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. | 
 |  * In both cases, it consists in the square root of the sum of the square of all the matrix entries. | 
 |  * For vectors, this is also equals to the square root of the dot product of \c *this with itself. | 
 |  * | 
 |  * \sa lpNorm(), dot(), squaredNorm() | 
 |  */ | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real | 
 | MatrixBase<Derived>::norm() const { | 
 |   return numext::sqrt(squaredNorm()); | 
 | } | 
 |  | 
 | /** \returns an expression of the quotient of \c *this by its own norm. | 
 |  * | 
 |  * \warning If the input vector is too small (i.e., this->norm()==0), | 
 |  *          then this function returns a copy of the input. | 
 |  * | 
 |  * \only_for_vectors | 
 |  * | 
 |  * \sa norm(), normalize() | 
 |  */ | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::normalized() | 
 |     const { | 
 |   typedef typename internal::nested_eval<Derived, 2>::type Nested_; | 
 |   Nested_ n(derived()); | 
 |   RealScalar z = n.squaredNorm(); | 
 |   // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU | 
 |   if (z > RealScalar(0)) | 
 |     return n / numext::sqrt(z); | 
 |   else | 
 |     return n; | 
 | } | 
 |  | 
 | /** Normalizes the vector, i.e. divides it by its own norm. | 
 |  * | 
 |  * \only_for_vectors | 
 |  * | 
 |  * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. | 
 |  * | 
 |  * \sa norm(), normalized() | 
 |  */ | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize() { | 
 |   RealScalar z = squaredNorm(); | 
 |   // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU | 
 |   if (z > RealScalar(0)) derived() /= numext::sqrt(z); | 
 | } | 
 |  | 
 | /** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow. | 
 |  * | 
 |  * \only_for_vectors | 
 |  * | 
 |  * This method is analogue to the normalized() method, but it reduces the risk of | 
 |  * underflow and overflow when computing the norm. | 
 |  * | 
 |  * \warning If the input vector is too small (i.e., this->norm()==0), | 
 |  *          then this function returns a copy of the input. | 
 |  * | 
 |  * \sa stableNorm(), stableNormalize(), normalized() | 
 |  */ | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject | 
 | MatrixBase<Derived>::stableNormalized() const { | 
 |   typedef typename internal::nested_eval<Derived, 3>::type Nested_; | 
 |   Nested_ n(derived()); | 
 |   RealScalar w = n.cwiseAbs().maxCoeff(); | 
 |   RealScalar z = (n / w).squaredNorm(); | 
 |   if (z > RealScalar(0)) | 
 |     return n / (numext::sqrt(z) * w); | 
 |   else | 
 |     return n; | 
 | } | 
 |  | 
 | /** Normalizes the vector while avoid underflow and overflow | 
 |  * | 
 |  * \only_for_vectors | 
 |  * | 
 |  * This method is analogue to the normalize() method, but it reduces the risk of | 
 |  * underflow and overflow when computing the norm. | 
 |  * | 
 |  * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. | 
 |  * | 
 |  * \sa stableNorm(), stableNormalized(), normalize() | 
 |  */ | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize() { | 
 |   RealScalar w = cwiseAbs().maxCoeff(); | 
 |   RealScalar z = (derived() / w).squaredNorm(); | 
 |   if (z > RealScalar(0)) derived() /= numext::sqrt(z) * w; | 
 | } | 
 |  | 
 | //---------- implementation of other norms ---------- | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename Derived, int p> | 
 | struct lpNorm_selector { | 
 |   typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const MatrixBase<Derived>& m) { | 
 |     EIGEN_USING_STD(pow) | 
 |     return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1) / p); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Derived> | 
 | struct lpNorm_selector<Derived, 1> { | 
 |   EIGEN_DEVICE_FUNC static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run( | 
 |       const MatrixBase<Derived>& m) { | 
 |     return m.cwiseAbs().sum(); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Derived> | 
 | struct lpNorm_selector<Derived, 2> { | 
 |   EIGEN_DEVICE_FUNC static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run( | 
 |       const MatrixBase<Derived>& m) { | 
 |     return m.norm(); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Derived> | 
 | struct lpNorm_selector<Derived, Infinity> { | 
 |   typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const MatrixBase<Derived>& m) { | 
 |     if (Derived::SizeAtCompileTime == 0 || (Derived::SizeAtCompileTime == Dynamic && m.size() == 0)) | 
 |       return RealScalar(0); | 
 |     return m.cwiseAbs().maxCoeff(); | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | /** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the | 
 |  * p-th powers of the absolute values of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, | 
 |  * this function returns the \f$ \ell^\infty \f$ norm, that is the maximum of the absolute values of the coefficients of | 
 |  * \c *this. | 
 |  * | 
 |  * In all cases, if \c *this is empty, then the value 0 is returned. | 
 |  * | 
 |  * \note For matrices, this function does not compute the <a | 
 |  * href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its | 
 |  * coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm | 
 |  * matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink. | 
 |  * | 
 |  * \sa norm() | 
 |  */ | 
 | template <typename Derived> | 
 | template <int p> | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 | EIGEN_DEVICE_FUNC inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real | 
 | #else | 
 | EIGEN_DEVICE_FUNC MatrixBase<Derived>::RealScalar | 
 | #endif | 
 | MatrixBase<Derived>::lpNorm() const { | 
 |   return internal::lpNorm_selector<Derived, p>::run(*this); | 
 | } | 
 |  | 
 | //---------- implementation of isOrthogonal / isUnitary ---------- | 
 |  | 
 | /** \returns true if *this is approximately orthogonal to \a other, | 
 |  *          within the precision given by \a prec. | 
 |  * | 
 |  * Example: \include MatrixBase_isOrthogonal.cpp | 
 |  * Output: \verbinclude MatrixBase_isOrthogonal.out | 
 |  */ | 
 | template <typename Derived> | 
 | template <typename OtherDerived> | 
 | bool MatrixBase<Derived>::isOrthogonal(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const { | 
 |   typename internal::nested_eval<Derived, 2>::type nested(derived()); | 
 |   typename internal::nested_eval<OtherDerived, 2>::type otherNested(other.derived()); | 
 |   return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); | 
 | } | 
 |  | 
 | /** \returns true if *this is approximately an unitary matrix, | 
 |  *          within the precision given by \a prec. In the case where the \a Scalar | 
 |  *          type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. | 
 |  * | 
 |  * \note This can be used to check whether a family of vectors forms an orthonormal basis. | 
 |  *       Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an | 
 |  *       orthonormal basis. | 
 |  * | 
 |  * Example: \include MatrixBase_isUnitary.cpp | 
 |  * Output: \verbinclude MatrixBase_isUnitary.out | 
 |  */ | 
 | template <typename Derived> | 
 | bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const { | 
 |   typename internal::nested_eval<Derived, 1>::type self(derived()); | 
 |   for (Index i = 0; i < cols(); ++i) { | 
 |     if (!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec)) return false; | 
 |     for (Index j = 0; j < i; ++j) | 
 |       if (!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec)) return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_DOT_H |