|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_DENSESTORAGEBASE_H | 
|  | #define EIGEN_DENSESTORAGEBASE_H | 
|  |  | 
|  | #if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO) | 
|  | #define EIGEN_INITIALIZE_COEFFS | 
|  | #define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED \ | 
|  | for (Index i = 0; i < base().size(); ++i) coeffRef(i) = Scalar(0); | 
|  | #elif defined(EIGEN_INITIALIZE_MATRICES_BY_NAN) | 
|  | #define EIGEN_INITIALIZE_COEFFS | 
|  | #define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED \ | 
|  | for (Index i = 0; i < base().size(); ++i) coeffRef(i) = std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | #else | 
|  | #undef EIGEN_INITIALIZE_COEFFS | 
|  | #define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | #endif | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | #ifndef EIGEN_NO_DEBUG | 
|  | template <int MaxSizeAtCompileTime, int MaxRowsAtCompileTime, int MaxColsAtCompileTime> | 
|  | struct check_rows_cols_for_overflow { | 
|  | EIGEN_STATIC_ASSERT(MaxRowsAtCompileTime* MaxColsAtCompileTime == MaxSizeAtCompileTime, | 
|  | YOU MADE A PROGRAMMING MISTAKE) | 
|  | template <typename Index> | 
|  | EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index, Index) {} | 
|  | }; | 
|  |  | 
|  | template <int MaxRowsAtCompileTime> | 
|  | struct check_rows_cols_for_overflow<Dynamic, MaxRowsAtCompileTime, Dynamic> { | 
|  | template <typename Index> | 
|  | EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index, Index cols) { | 
|  | constexpr Index MaxIndex = NumTraits<Index>::highest(); | 
|  | bool error = cols > (MaxIndex / MaxRowsAtCompileTime); | 
|  | if (error) throw_std_bad_alloc(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <int MaxColsAtCompileTime> | 
|  | struct check_rows_cols_for_overflow<Dynamic, Dynamic, MaxColsAtCompileTime> { | 
|  | template <typename Index> | 
|  | EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index rows, Index) { | 
|  | constexpr Index MaxIndex = NumTraits<Index>::highest(); | 
|  | bool error = rows > (MaxIndex / MaxColsAtCompileTime); | 
|  | if (error) throw_std_bad_alloc(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct check_rows_cols_for_overflow<Dynamic, Dynamic, Dynamic> { | 
|  | template <typename Index> | 
|  | EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index rows, Index cols) { | 
|  | constexpr Index MaxIndex = NumTraits<Index>::highest(); | 
|  | bool error = cols == 0 ? false : (rows > (MaxIndex / cols)); | 
|  | if (error) throw_std_bad_alloc(); | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | template <typename Derived, typename OtherDerived = Derived, | 
|  | bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)> | 
|  | struct conservative_resize_like_impl; | 
|  |  | 
|  | template <typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> | 
|  | struct matrix_swap_impl; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | namespace doxygen { | 
|  |  | 
|  | // This is a workaround to doxygen not being able to understand the inheritance logic | 
|  | // when it is hidden by the dense_xpr_base helper struct. | 
|  | // Moreover, doxygen fails to include members that are not documented in the declaration body of | 
|  | // MatrixBase if we inherits MatrixBase<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >, | 
|  | // this is why we simply inherits MatrixBase, though this does not make sense. | 
|  |  | 
|  | /** This class is just a workaround for Doxygen and it does not not actually exist. */ | 
|  | template <typename Derived> | 
|  | struct dense_xpr_base_dispatcher; | 
|  | /** This class is just a workaround for Doxygen and it does not not actually exist. */ | 
|  | template <typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_> | 
|  | struct dense_xpr_base_dispatcher<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>> : public MatrixBase {}; | 
|  | /** This class is just a workaround for Doxygen and it does not not actually exist. */ | 
|  | template <typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_> | 
|  | struct dense_xpr_base_dispatcher<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>> : public ArrayBase {}; | 
|  |  | 
|  | }  // namespace doxygen | 
|  |  | 
|  | /** \class PlainObjectBase | 
|  | * \ingroup Core_Module | 
|  | * \brief %Dense storage base class for matrices and arrays. | 
|  | * | 
|  | * This class can be extended with the help of the plugin mechanism described on the page | 
|  | * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. | 
|  | * | 
|  | * \tparam Derived is the derived type, e.g., a Matrix or Array | 
|  | * | 
|  | * \sa \ref TopicClassHierarchy | 
|  | */ | 
|  | template <typename Derived> | 
|  | class PlainObjectBase : public doxygen::dense_xpr_base_dispatcher<Derived> | 
|  | #else | 
|  | template <typename Derived> | 
|  | class PlainObjectBase : public internal::dense_xpr_base<Derived>::type | 
|  | #endif | 
|  | { | 
|  | public: | 
|  | enum { Options = internal::traits<Derived>::Options }; | 
|  | typedef typename internal::dense_xpr_base<Derived>::type Base; | 
|  |  | 
|  | typedef typename internal::traits<Derived>::StorageKind StorageKind; | 
|  | typedef typename internal::traits<Derived>::Scalar Scalar; | 
|  |  | 
|  | typedef typename internal::packet_traits<Scalar>::type PacketScalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Derived DenseType; | 
|  |  | 
|  | using Base::ColsAtCompileTime; | 
|  | using Base::Flags; | 
|  | using Base::IsVectorAtCompileTime; | 
|  | using Base::MaxColsAtCompileTime; | 
|  | using Base::MaxRowsAtCompileTime; | 
|  | using Base::MaxSizeAtCompileTime; | 
|  | using Base::RowsAtCompileTime; | 
|  | using Base::SizeAtCompileTime; | 
|  |  | 
|  | typedef Eigen::Map<Derived, Unaligned> MapType; | 
|  | typedef const Eigen::Map<const Derived, Unaligned> ConstMapType; | 
|  | typedef Eigen::Map<Derived, AlignedMax> AlignedMapType; | 
|  | typedef const Eigen::Map<const Derived, AlignedMax> ConstAlignedMapType; | 
|  | template <typename StrideType> | 
|  | struct StridedMapType { | 
|  | typedef Eigen::Map<Derived, Unaligned, StrideType> type; | 
|  | }; | 
|  | template <typename StrideType> | 
|  | struct StridedConstMapType { | 
|  | typedef Eigen::Map<const Derived, Unaligned, StrideType> type; | 
|  | }; | 
|  | template <typename StrideType> | 
|  | struct StridedAlignedMapType { | 
|  | typedef Eigen::Map<Derived, AlignedMax, StrideType> type; | 
|  | }; | 
|  | template <typename StrideType> | 
|  | struct StridedConstAlignedMapType { | 
|  | typedef Eigen::Map<const Derived, AlignedMax, StrideType> type; | 
|  | }; | 
|  |  | 
|  | protected: | 
|  | DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage; | 
|  |  | 
|  | public: | 
|  | enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits<Derived>::Alignment > 0) }; | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) | 
|  |  | 
|  | EIGEN_STATIC_ASSERT(internal::check_implication(MaxRowsAtCompileTime == 1 && MaxColsAtCompileTime != 1, | 
|  | (int(Options) & RowMajor) == RowMajor), | 
|  | INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | EIGEN_STATIC_ASSERT(internal::check_implication(MaxColsAtCompileTime == 1 && MaxRowsAtCompileTime != 1, | 
|  | (int(Options) & RowMajor) == 0), | 
|  | INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | EIGEN_STATIC_ASSERT((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | EIGEN_STATIC_ASSERT((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | EIGEN_STATIC_ASSERT((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0), | 
|  | INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | EIGEN_STATIC_ASSERT((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0), | 
|  | INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | EIGEN_STATIC_ASSERT((MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime == Dynamic), | 
|  | INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | EIGEN_STATIC_ASSERT((MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime == Dynamic), | 
|  | INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | EIGEN_STATIC_ASSERT(((Options & (DontAlign | RowMajor)) == Options), INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  |  | 
|  | EIGEN_DEVICE_FUNC Base& base() { return *static_cast<Base*>(this); } | 
|  | EIGEN_DEVICE_FUNC const Base& base() const { return *static_cast<const Base*>(this); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_storage.rows(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_storage.cols(); } | 
|  |  | 
|  | /** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,Index) const | 
|  | * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. | 
|  | * | 
|  | * See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeff(Index rowId, Index colId) const { | 
|  | if (Flags & RowMajorBit) | 
|  | return m_storage.data()[colId + rowId * m_storage.cols()]; | 
|  | else  // column-major | 
|  | return m_storage.data()[rowId + colId * m_storage.rows()]; | 
|  | } | 
|  |  | 
|  | /** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const | 
|  | * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. | 
|  | * | 
|  | * See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeff(Index index) const { | 
|  | return m_storage.data()[index]; | 
|  | } | 
|  |  | 
|  | /** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const | 
|  | * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. | 
|  | * | 
|  | * See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const for details. */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Scalar& coeffRef(Index rowId, Index colId) { | 
|  | if (Flags & RowMajorBit) | 
|  | return m_storage.data()[colId + rowId * m_storage.cols()]; | 
|  | else  // column-major | 
|  | return m_storage.data()[rowId + colId * m_storage.rows()]; | 
|  | } | 
|  |  | 
|  | /** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const | 
|  | * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. | 
|  | * | 
|  | * See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const for details. */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Scalar& coeffRef(Index index) { return m_storage.data()[index]; } | 
|  |  | 
|  | /** This is the const version of coeffRef(Index,Index) which is thus synonym of coeff(Index,Index). | 
|  | * It is provided for convenience. */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeffRef(Index rowId, Index colId) const { | 
|  | if (Flags & RowMajorBit) | 
|  | return m_storage.data()[colId + rowId * m_storage.cols()]; | 
|  | else  // column-major | 
|  | return m_storage.data()[rowId + colId * m_storage.rows()]; | 
|  | } | 
|  |  | 
|  | /** This is the const version of coeffRef(Index) which is thus synonym of coeff(Index). | 
|  | * It is provided for convenience. */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeffRef(Index index) const { | 
|  | return m_storage.data()[index]; | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <int LoadMode> | 
|  | EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const { | 
|  | return internal::ploadt<PacketScalar, LoadMode>( | 
|  | m_storage.data() + (Flags & RowMajorBit ? colId + rowId * m_storage.cols() : rowId + colId * m_storage.rows())); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <int LoadMode> | 
|  | EIGEN_STRONG_INLINE PacketScalar packet(Index index) const { | 
|  | return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <int StoreMode> | 
|  | EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val) { | 
|  | internal::pstoret<Scalar, PacketScalar, StoreMode>( | 
|  | m_storage.data() + (Flags & RowMajorBit ? colId + rowId * m_storage.cols() : rowId + colId * m_storage.rows()), | 
|  | val); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <int StoreMode> | 
|  | EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val) { | 
|  | internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val); | 
|  | } | 
|  |  | 
|  | /** \returns a const pointer to the data array of this matrix */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar* data() const { return m_storage.data(); } | 
|  |  | 
|  | /** \returns a pointer to the data array of this matrix */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() { return m_storage.data(); } | 
|  |  | 
|  | /** Resizes \c *this to a \a rows x \a cols matrix. | 
|  | * | 
|  | * This method is intended for dynamic-size matrices, although it is legal to call it on any | 
|  | * matrix as long as fixed dimensions are left unchanged. If you only want to change the number | 
|  | * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t). | 
|  | * | 
|  | * If the current number of coefficients of \c *this exactly matches the | 
|  | * product \a rows * \a cols, then no memory allocation is performed and | 
|  | * the current values are left unchanged. In all other cases, including | 
|  | * shrinking, the data is reallocated and all previous values are lost. | 
|  | * | 
|  | * Example: \include Matrix_resize_int_int.cpp | 
|  | * Output: \verbinclude Matrix_resize_int_int.out | 
|  | * | 
|  | * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void resize(Index rows, Index cols) { | 
|  | eigen_assert(internal::check_implication(RowsAtCompileTime != Dynamic, rows == RowsAtCompileTime) && | 
|  | internal::check_implication(ColsAtCompileTime != Dynamic, cols == ColsAtCompileTime) && | 
|  | internal::check_implication(RowsAtCompileTime == Dynamic && MaxRowsAtCompileTime != Dynamic, | 
|  | rows <= MaxRowsAtCompileTime) && | 
|  | internal::check_implication(ColsAtCompileTime == Dynamic && MaxColsAtCompileTime != Dynamic, | 
|  | cols <= MaxColsAtCompileTime) && | 
|  | rows >= 0 && cols >= 0 && "Invalid sizes when resizing a matrix or array."); | 
|  | #ifndef EIGEN_NO_DEBUG | 
|  | internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime>::run(rows, | 
|  | cols); | 
|  | #endif | 
|  | #ifdef EIGEN_INITIALIZE_COEFFS | 
|  | Index size = rows * cols; | 
|  | bool size_changed = size != this->size(); | 
|  | m_storage.resize(size, rows, cols); | 
|  | if (size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | #else | 
|  | m_storage.resize(rows * cols, rows, cols); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** Resizes \c *this to a vector of length \a size | 
|  | * | 
|  | * \only_for_vectors. This method does not work for | 
|  | * partially dynamic matrices when the static dimension is anything other | 
|  | * than 1. For example it will not work with Matrix<double, 2, Dynamic>. | 
|  | * | 
|  | * Example: \include Matrix_resize_int.cpp | 
|  | * Output: \verbinclude Matrix_resize_int.out | 
|  | * | 
|  | * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline constexpr void resize(Index size) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase) | 
|  | eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime == Dynamic || size <= MaxSizeAtCompileTime)) || | 
|  | SizeAtCompileTime == size) && | 
|  | size >= 0); | 
|  | #ifdef EIGEN_INITIALIZE_COEFFS | 
|  | bool size_changed = size != this->size(); | 
|  | #endif | 
|  | if (RowsAtCompileTime == 1) | 
|  | m_storage.resize(size, 1, size); | 
|  | else | 
|  | m_storage.resize(size, size, 1); | 
|  | #ifdef EIGEN_INITIALIZE_COEFFS | 
|  | if (size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the | 
|  | * special value \c NoChange as in the example below. | 
|  | * | 
|  | * Example: \include Matrix_resize_NoChange_int.cpp | 
|  | * Output: \verbinclude Matrix_resize_NoChange_int.out | 
|  | * | 
|  | * \sa resize(Index,Index) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline constexpr void resize(NoChange_t, Index cols) { resize(rows(), cols); } | 
|  |  | 
|  | /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special | 
|  | * value \c NoChange as in the example below. | 
|  | * | 
|  | * Example: \include Matrix_resize_int_NoChange.cpp | 
|  | * Output: \verbinclude Matrix_resize_int_NoChange.out | 
|  | * | 
|  | * \sa resize(Index,Index) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline constexpr void resize(Index rows, NoChange_t) { resize(rows, cols()); } | 
|  |  | 
|  | /** Resizes \c *this to have the same dimensions as \a other. | 
|  | * Takes care of doing all the checking that's needed. | 
|  | * | 
|  | * Note that copying a row-vector into a vector (and conversely) is allowed. | 
|  | * The resizing, if any, is then done in the appropriate way so that row-vectors | 
|  | * remain row-vectors and vectors remain vectors. | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other) { | 
|  | const OtherDerived& other = _other.derived(); | 
|  | #ifndef EIGEN_NO_DEBUG | 
|  | internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime>::run( | 
|  | other.rows(), other.cols()); | 
|  | #endif | 
|  | const Index othersize = other.rows() * other.cols(); | 
|  | if (RowsAtCompileTime == 1) { | 
|  | eigen_assert(other.rows() == 1 || other.cols() == 1); | 
|  | resize(1, othersize); | 
|  | } else if (ColsAtCompileTime == 1) { | 
|  | eigen_assert(other.rows() == 1 || other.cols() == 1); | 
|  | resize(othersize, 1); | 
|  | } else | 
|  | resize(other.rows(), other.cols()); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. | 
|  | * | 
|  | * The method is intended for matrices of dynamic size. If you only want to change the number | 
|  | * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or | 
|  | * conservativeResize(Index, NoChange_t). | 
|  | * | 
|  | * Matrices are resized relative to the top-left element. In case values need to be | 
|  | * appended to the matrix they will be uninitialized. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols) { | 
|  | internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. | 
|  | * | 
|  | * As opposed to conservativeResize(Index rows, Index cols), this version leaves | 
|  | * the number of columns unchanged. | 
|  | * | 
|  | * In case the matrix is growing, new rows will be uninitialized. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t) { | 
|  | // Note: see the comment in conservativeResize(Index,Index) | 
|  | conservativeResize(rows, cols()); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. | 
|  | * | 
|  | * As opposed to conservativeResize(Index rows, Index cols), this version leaves | 
|  | * the number of rows unchanged. | 
|  | * | 
|  | * In case the matrix is growing, new columns will be uninitialized. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols) { | 
|  | // Note: see the comment in conservativeResize(Index,Index) | 
|  | conservativeResize(rows(), cols); | 
|  | } | 
|  |  | 
|  | /** Resizes the vector to \a size while retaining old values. | 
|  | * | 
|  | * \only_for_vectors. This method does not work for | 
|  | * partially dynamic matrices when the static dimension is anything other | 
|  | * than 1. For example it will not work with Matrix<double, 2, Dynamic>. | 
|  | * | 
|  | * When values are appended, they will be uninitialized. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index size) { | 
|  | internal::conservative_resize_like_impl<Derived>::run(*this, size); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched. | 
|  | * | 
|  | * The method is intended for matrices of dynamic size. If you only want to change the number | 
|  | * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or | 
|  | * conservativeResize(Index, NoChange_t). | 
|  | * | 
|  | * Matrices are resized relative to the top-left element. In case values need to be | 
|  | * appended to the matrix they will copied from \c other. | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other) { | 
|  | internal::conservative_resize_like_impl<Derived, OtherDerived>::run(*this, other); | 
|  | } | 
|  |  | 
|  | /** This is a special case of the templated operator=. Its purpose is to | 
|  | * prevent a default operator= from hiding the templated operator=. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Derived& operator=(const PlainObjectBase& other) { | 
|  | return _set(other); | 
|  | } | 
|  |  | 
|  | /** \sa MatrixBase::lazyAssign() */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other) { | 
|  | _resize_to_match(other); | 
|  | return Base::lazyAssign(other.derived()); | 
|  | } | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func) { | 
|  | resize(func.rows(), func.cols()); | 
|  | return Base::operator=(func); | 
|  | } | 
|  |  | 
|  | // Prevent user from trying to instantiate PlainObjectBase objects | 
|  | // by making all its constructor protected. See bug 1074. | 
|  | protected: | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase() : m_storage() { | 
|  | //       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | // FIXME is it still needed ? | 
|  | /** \internal */ | 
|  | EIGEN_DEVICE_FUNC constexpr explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert) | 
|  | : m_storage(internal::constructor_without_unaligned_array_assert()) { | 
|  | // EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | } | 
|  | #endif | 
|  |  | 
|  | EIGEN_DEVICE_FUNC constexpr PlainObjectBase(PlainObjectBase&& other) EIGEN_NOEXCEPT | 
|  | : m_storage(std::move(other.m_storage)) {} | 
|  |  | 
|  | EIGEN_DEVICE_FUNC constexpr PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT { | 
|  | m_storage = std::move(other.m_storage); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Copy constructor */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase(const PlainObjectBase& other) | 
|  | : Base(), m_storage(other.m_storage) {} | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols) | 
|  | : m_storage(size, rows, cols) { | 
|  | //       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | } | 
|  |  | 
|  | /** \brief Construct a row of column vector with fixed size from an arbitrary number of coefficients. | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * This constructor is for 1D array or vectors with more than 4 coefficients. | 
|  | * | 
|  | * \warning To construct a column (resp. row) vector of fixed length, the number of values passed to this | 
|  | * constructor must match the the fixed number of rows (resp. columns) of \c *this. | 
|  | */ | 
|  | template <typename... ArgTypes> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const Scalar& a0, const Scalar& a1, const Scalar& a2, | 
|  | const Scalar& a3, const ArgTypes&... args) | 
|  | : m_storage() { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, sizeof...(args) + 4); | 
|  | m_storage.data()[0] = a0; | 
|  | m_storage.data()[1] = a1; | 
|  | m_storage.data()[2] = a2; | 
|  | m_storage.data()[3] = a3; | 
|  | Index i = 4; | 
|  | auto x = {(m_storage.data()[i++] = args, 0)...}; | 
|  | static_cast<void>(x); | 
|  | } | 
|  |  | 
|  | /** \brief Constructs a Matrix or Array and initializes it by elements given by an initializer list of initializer | 
|  | * lists | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC explicit constexpr EIGEN_STRONG_INLINE PlainObjectBase( | 
|  | const std::initializer_list<std::initializer_list<Scalar>>& list) | 
|  | : m_storage() { | 
|  | size_t list_size = 0; | 
|  | if (list.begin() != list.end()) { | 
|  | list_size = list.begin()->size(); | 
|  | } | 
|  |  | 
|  | // This is to allow syntax like VectorXi {{1, 2, 3, 4}} | 
|  | if (ColsAtCompileTime == 1 && list.size() == 1) { | 
|  | eigen_assert(list_size == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic); | 
|  | resize(list_size, ColsAtCompileTime); | 
|  | if (list.begin()->begin() != nullptr) { | 
|  | std::copy(list.begin()->begin(), list.begin()->end(), m_storage.data()); | 
|  | } | 
|  | } else { | 
|  | eigen_assert(list.size() == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic); | 
|  | eigen_assert(list_size == static_cast<size_t>(ColsAtCompileTime) || ColsAtCompileTime == Dynamic); | 
|  | resize(list.size(), list_size); | 
|  |  | 
|  | Index row_index = 0; | 
|  | for (const std::initializer_list<Scalar>& row : list) { | 
|  | eigen_assert(list_size == row.size()); | 
|  | Index col_index = 0; | 
|  | for (const Scalar& e : row) { | 
|  | coeffRef(row_index, col_index) = e; | 
|  | ++col_index; | 
|  | } | 
|  | ++row_index; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived>& other) : m_storage() { | 
|  | resizeLike(other); | 
|  | _set_noalias(other); | 
|  | } | 
|  |  | 
|  | /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived>& other) : m_storage() { | 
|  | resizeLike(other); | 
|  | *this = other.derived(); | 
|  | } | 
|  | /** \brief Copy constructor with in-place evaluation */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue<OtherDerived>& other) { | 
|  | // FIXME this does not automatically transpose vectors if necessary | 
|  | resize(other.rows(), other.cols()); | 
|  | other.evalTo(this->derived()); | 
|  | } | 
|  |  | 
|  | public: | 
|  | /** \brief Copies the generic expression \a other into *this. | 
|  | * \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other) | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived>& other) { | 
|  | _resize_to_match(other); | 
|  | Base::operator=(other.derived()); | 
|  | return this->derived(); | 
|  | } | 
|  |  | 
|  | /** \name Map | 
|  | * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects, | 
|  | * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned | 
|  | * \a data pointers. | 
|  | * | 
|  | * Here is an example using strides: | 
|  | * \include Matrix_Map_stride.cpp | 
|  | * Output: \verbinclude Matrix_Map_stride.out | 
|  | * | 
|  | * \see class Map | 
|  | */ | 
|  | ///@{ | 
|  | static inline ConstMapType Map(const Scalar* data) { return ConstMapType(data); } | 
|  | static inline MapType Map(Scalar* data) { return MapType(data); } | 
|  | static inline ConstMapType Map(const Scalar* data, Index size) { return ConstMapType(data, size); } | 
|  | static inline MapType Map(Scalar* data, Index size) { return MapType(data, size); } | 
|  | static inline ConstMapType Map(const Scalar* data, Index rows, Index cols) { return ConstMapType(data, rows, cols); } | 
|  | static inline MapType Map(Scalar* data, Index rows, Index cols) { return MapType(data, rows, cols); } | 
|  |  | 
|  | static inline ConstAlignedMapType MapAligned(const Scalar* data) { return ConstAlignedMapType(data); } | 
|  | static inline AlignedMapType MapAligned(Scalar* data) { return AlignedMapType(data); } | 
|  | static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size) { | 
|  | return ConstAlignedMapType(data, size); | 
|  | } | 
|  | static inline AlignedMapType MapAligned(Scalar* data, Index size) { return AlignedMapType(data, size); } | 
|  | static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols) { | 
|  | return ConstAlignedMapType(data, rows, cols); | 
|  | } | 
|  | static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols) { | 
|  | return AlignedMapType(data, rows, cols); | 
|  | } | 
|  |  | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedConstMapType<Stride<Outer, Inner>>::type Map(const Scalar* data, | 
|  | const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedConstMapType<Stride<Outer, Inner>>::type(data, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedMapType<Stride<Outer, Inner>>::type Map(Scalar* data, | 
|  | const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedMapType<Stride<Outer, Inner>>::type(data, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedConstMapType<Stride<Outer, Inner>>::type Map(const Scalar* data, Index size, | 
|  | const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedConstMapType<Stride<Outer, Inner>>::type(data, size, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedMapType<Stride<Outer, Inner>>::type Map(Scalar* data, Index size, | 
|  | const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedMapType<Stride<Outer, Inner>>::type(data, size, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedConstMapType<Stride<Outer, Inner>>::type Map(const Scalar* data, Index rows, Index cols, | 
|  | const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedConstMapType<Stride<Outer, Inner>>::type(data, rows, cols, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedMapType<Stride<Outer, Inner>>::type Map(Scalar* data, Index rows, Index cols, | 
|  | const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedMapType<Stride<Outer, Inner>>::type(data, rows, cols, stride); | 
|  | } | 
|  |  | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type MapAligned( | 
|  | const Scalar* data, const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type(data, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedAlignedMapType<Stride<Outer, Inner>>::type MapAligned( | 
|  | Scalar* data, const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedAlignedMapType<Stride<Outer, Inner>>::type(data, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type MapAligned( | 
|  | const Scalar* data, Index size, const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type(data, size, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedAlignedMapType<Stride<Outer, Inner>>::type MapAligned( | 
|  | Scalar* data, Index size, const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedAlignedMapType<Stride<Outer, Inner>>::type(data, size, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type MapAligned( | 
|  | const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type(data, rows, cols, stride); | 
|  | } | 
|  | template <int Outer, int Inner> | 
|  | static inline typename StridedAlignedMapType<Stride<Outer, Inner>>::type MapAligned( | 
|  | Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) { | 
|  | return typename StridedAlignedMapType<Stride<Outer, Inner>>::type(data, rows, cols, stride); | 
|  | } | 
|  | ///@} | 
|  |  | 
|  | using Base::setConstant; | 
|  | EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& val); | 
|  | EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, Index cols, const Scalar& val); | 
|  | EIGEN_DEVICE_FUNC Derived& setConstant(NoChange_t, Index cols, const Scalar& val); | 
|  | EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, NoChange_t, const Scalar& val); | 
|  |  | 
|  | using Base::setZero; | 
|  | EIGEN_DEVICE_FUNC Derived& setZero(Index size); | 
|  | EIGEN_DEVICE_FUNC Derived& setZero(Index rows, Index cols); | 
|  | EIGEN_DEVICE_FUNC Derived& setZero(NoChange_t, Index cols); | 
|  | EIGEN_DEVICE_FUNC Derived& setZero(Index rows, NoChange_t); | 
|  |  | 
|  | using Base::setOnes; | 
|  | EIGEN_DEVICE_FUNC Derived& setOnes(Index size); | 
|  | EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, Index cols); | 
|  | EIGEN_DEVICE_FUNC Derived& setOnes(NoChange_t, Index cols); | 
|  | EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, NoChange_t); | 
|  |  | 
|  | using Base::setRandom; | 
|  | Derived& setRandom(Index size); | 
|  | Derived& setRandom(Index rows, Index cols); | 
|  | Derived& setRandom(NoChange_t, Index cols); | 
|  | Derived& setRandom(Index rows, NoChange_t); | 
|  |  | 
|  | #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN | 
|  | #include EIGEN_PLAINOBJECTBASE_PLUGIN | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | /** \internal Resizes *this in preparation for assigning \a other to it. | 
|  | * Takes care of doing all the checking that's needed. | 
|  | * | 
|  | * Note that copying a row-vector into a vector (and conversely) is allowed. | 
|  | * The resizing, if any, is then done in the appropriate way so that row-vectors | 
|  | * remain row-vectors and vectors remain vectors. | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other) { | 
|  | #ifdef EIGEN_NO_AUTOMATIC_RESIZING | 
|  | eigen_assert((this->size() == 0 || (IsVectorAtCompileTime ? (this->size() == other.size()) | 
|  | : (rows() == other.rows() && cols() == other.cols()))) && | 
|  | "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); | 
|  | EIGEN_ONLY_USED_FOR_DEBUG(other); | 
|  | #else | 
|  | resizeLike(other); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief Copies the value of the expression \a other into \c *this with automatic resizing. | 
|  | * | 
|  | * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), | 
|  | * it will be initialized. | 
|  | * | 
|  | * Note that copying a row-vector into a vector (and conversely) is allowed. | 
|  | * The resizing, if any, is then done in the appropriate way so that row-vectors | 
|  | * remain row-vectors and vectors remain vectors. | 
|  | * | 
|  | * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias() | 
|  | * | 
|  | * \internal | 
|  | */ | 
|  | // aliasing is dealt once in internal::call_assignment | 
|  | // so at this stage we have to assume aliasing... and resising has to be done later. | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Derived& _set(const DenseBase<OtherDerived>& other) { | 
|  | internal::call_assignment(this->derived(), other.derived()); | 
|  | return this->derived(); | 
|  | } | 
|  |  | 
|  | /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which | 
|  | * is the case when creating a new matrix) so one can enforce lazy evaluation. | 
|  | * | 
|  | * \sa operator=(const MatrixBase<OtherDerived>&), _set() | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Derived& _set_noalias(const DenseBase<OtherDerived>& other) { | 
|  | // I don't think we need this resize call since the lazyAssign will anyways resize | 
|  | // and lazyAssign will be called by the assign selector. | 
|  | //_resize_to_match(other); | 
|  | // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because | 
|  | // it wouldn't allow to copy a row-vector into a column-vector. | 
|  | internal::call_assignment_no_alias(this->derived(), other.derived(), | 
|  | internal::assign_op<Scalar, typename OtherDerived::Scalar>()); | 
|  | return this->derived(); | 
|  | } | 
|  |  | 
|  | template <typename T0, typename T1> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, | 
|  | std::enable_if_t<Base::SizeAtCompileTime != 2, T0>* = 0) { | 
|  | EIGEN_STATIC_ASSERT(internal::is_valid_index_type<T0>::value && internal::is_valid_index_type<T1>::value, | 
|  | T0 AND T1 MUST BE INTEGER TYPES) | 
|  | resize(rows, cols); | 
|  | } | 
|  |  | 
|  | template <typename T0, typename T1> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, | 
|  | std::enable_if_t<Base::SizeAtCompileTime == 2, T0>* = 0) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) | 
|  | m_storage.data()[0] = Scalar(val0); | 
|  | m_storage.data()[1] = Scalar(val1); | 
|  | } | 
|  |  | 
|  | template <typename T0, typename T1> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init2( | 
|  | const Index& val0, const Index& val1, | 
|  | std::enable_if_t<(!internal::is_same<Index, Scalar>::value) && (internal::is_same<T0, Index>::value) && | 
|  | (internal::is_same<T1, Index>::value) && Base::SizeAtCompileTime == 2, | 
|  | T1>* = 0) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) | 
|  | m_storage.data()[0] = Scalar(val0); | 
|  | m_storage.data()[1] = Scalar(val1); | 
|  | } | 
|  |  | 
|  | // The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array, | 
|  | // then the argument is meant to be the size of the object. | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( | 
|  | Index size, | 
|  | std::enable_if_t<(Base::SizeAtCompileTime != 1 || !internal::is_convertible<T, Scalar>::value) && | 
|  | ((!internal::is_same<typename internal::traits<Derived>::XprKind, ArrayXpr>::value || | 
|  | Base::SizeAtCompileTime == Dynamic)), | 
|  | T>* = 0) { | 
|  | // NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument. | 
|  | const bool is_integer_alike = internal::is_valid_index_type<T>::value; | 
|  | EIGEN_UNUSED_VARIABLE(is_integer_alike); | 
|  | EIGEN_STATIC_ASSERT(is_integer_alike, FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) | 
|  | resize(size); | 
|  | } | 
|  |  | 
|  | // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar | 
|  | // type can be implicitly converted) | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( | 
|  | const Scalar& val0, | 
|  | std::enable_if_t<Base::SizeAtCompileTime == 1 && internal::is_convertible<T, Scalar>::value, T>* = 0) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) | 
|  | m_storage.data()[0] = val0; | 
|  | } | 
|  |  | 
|  | // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar | 
|  | // type match the index type) | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( | 
|  | const Index& val0, | 
|  | std::enable_if_t<(!internal::is_same<Index, Scalar>::value) && (internal::is_same<Index, T>::value) && | 
|  | Base::SizeAtCompileTime == 1 && internal::is_convertible<T, Scalar>::value, | 
|  | T*>* = 0) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) | 
|  | m_storage.data()[0] = Scalar(val0); | 
|  | } | 
|  |  | 
|  | // Initialize a fixed size matrix from a pointer to raw data | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Scalar* data) { | 
|  | this->_set_noalias(ConstMapType(data)); | 
|  | } | 
|  |  | 
|  | // Initialize an arbitrary matrix from a dense expression | 
|  | template <typename T, typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other) { | 
|  | this->_set_noalias(other); | 
|  | } | 
|  |  | 
|  | // Initialize an arbitrary matrix from an object convertible to the Derived type. | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Derived& other) { | 
|  | this->_set_noalias(other); | 
|  | } | 
|  |  | 
|  | // Initialize an arbitrary matrix from a generic Eigen expression | 
|  | template <typename T, typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other) { | 
|  | this->derived() = other; | 
|  | } | 
|  |  | 
|  | template <typename T, typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const ReturnByValue<OtherDerived>& other) { | 
|  | resize(other.rows(), other.cols()); | 
|  | other.evalTo(this->derived()); | 
|  | } | 
|  |  | 
|  | template <typename T, typename OtherDerived, int ColsAtCompileTime> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const RotationBase<OtherDerived, ColsAtCompileTime>& r) { | 
|  | this->derived() = r; | 
|  | } | 
|  |  | 
|  | // For fixed-size Array<Scalar,...> | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( | 
|  | const Scalar& val0, | 
|  | std::enable_if_t<Base::SizeAtCompileTime != Dynamic && Base::SizeAtCompileTime != 1 && | 
|  | internal::is_convertible<T, Scalar>::value && | 
|  | internal::is_same<typename internal::traits<Derived>::XprKind, ArrayXpr>::value, | 
|  | T>* = 0) { | 
|  | Base::setConstant(val0); | 
|  | } | 
|  |  | 
|  | // For fixed-size Array<Index,...> | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( | 
|  | const Index& val0, | 
|  | std::enable_if_t<(!internal::is_same<Index, Scalar>::value) && (internal::is_same<Index, T>::value) && | 
|  | Base::SizeAtCompileTime != Dynamic && Base::SizeAtCompileTime != 1 && | 
|  | internal::is_convertible<T, Scalar>::value && | 
|  | internal::is_same<typename internal::traits<Derived>::XprKind, ArrayXpr>::value, | 
|  | T*>* = 0) { | 
|  | Base::setConstant(val0); | 
|  | } | 
|  |  | 
|  | template <typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> | 
|  | friend struct internal::matrix_swap_impl; | 
|  |  | 
|  | public: | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \internal | 
|  | * \brief Override DenseBase::swap() since for dynamic-sized matrices | 
|  | * of same type it is enough to swap the data pointers. | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(DenseBase<OtherDerived>& other) { | 
|  | enum {SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime == Dynamic}; | 
|  | internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.derived()); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \brief const version forwarded to DenseBase::swap | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(DenseBase<OtherDerived> const& other) { | 
|  | Base::swap(other.derived()); | 
|  | } | 
|  |  | 
|  | enum {IsPlainObjectBase = 1}; | 
|  | #endif | 
|  | public: | 
|  | // These apparently need to be down here for nvcc+icc to prevent duplicate | 
|  | // Map symbol. | 
|  | template <typename PlainObjectType, int MapOptions, typename StrideType> | 
|  | friend class Eigen::Map; | 
|  | friend class Eigen::Map<Derived, Unaligned>; | 
|  | friend class Eigen::Map<const Derived, Unaligned>; | 
|  | #if EIGEN_MAX_ALIGN_BYTES > 0 | 
|  | // for EIGEN_MAX_ALIGN_BYTES==0, AlignedMax==Unaligned, and many compilers generate warnings for friend-ing a class | 
|  | // twice. | 
|  | friend class Eigen::Map<Derived, AlignedMax>; | 
|  | friend class Eigen::Map<const Derived, AlignedMax>; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Derived, typename OtherDerived, bool IsVector> | 
|  | struct conservative_resize_like_impl { | 
|  | static constexpr bool IsRelocatable = std::is_trivially_copyable<typename Derived::Scalar>::value; | 
|  | static void run(DenseBase<Derived>& _this, Index rows, Index cols) { | 
|  | if (_this.rows() == rows && _this.cols() == cols) return; | 
|  | EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) | 
|  |  | 
|  | if (IsRelocatable && | 
|  | ((Derived::IsRowMajor && _this.cols() == cols) ||  // row-major and we change only the number of rows | 
|  | (!Derived::IsRowMajor && _this.rows() == rows)))  // column-major and we change only the number of columns | 
|  | { | 
|  | #ifndef EIGEN_NO_DEBUG | 
|  | internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime, Derived::MaxRowsAtCompileTime, | 
|  | Derived::MaxColsAtCompileTime>::run(rows, cols); | 
|  | #endif | 
|  | _this.derived().m_storage.conservativeResize(rows * cols, rows, cols); | 
|  | } else { | 
|  | // The storage order does not allow us to use reallocation. | 
|  | Derived tmp(rows, cols); | 
|  | const Index common_rows = numext::mini(rows, _this.rows()); | 
|  | const Index common_cols = numext::mini(cols, _this.cols()); | 
|  | tmp.block(0, 0, common_rows, common_cols) = _this.block(0, 0, common_rows, common_cols); | 
|  | _this.derived().swap(tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) { | 
|  | if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; | 
|  |  | 
|  | // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index), | 
|  | // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the | 
|  | // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or | 
|  | // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like | 
|  | // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good. | 
|  | EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) | 
|  | EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived) | 
|  |  | 
|  | if (IsRelocatable && | 
|  | ((Derived::IsRowMajor && _this.cols() == other.cols()) ||  // row-major and we change only the number of rows | 
|  | (!Derived::IsRowMajor && | 
|  | _this.rows() == other.rows())))  // column-major and we change only the number of columns | 
|  | { | 
|  | const Index new_rows = other.rows() - _this.rows(); | 
|  | const Index new_cols = other.cols() - _this.cols(); | 
|  | _this.derived().m_storage.conservativeResize(other.size(), other.rows(), other.cols()); | 
|  | if (new_rows > 0) | 
|  | _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows); | 
|  | else if (new_cols > 0) | 
|  | _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols); | 
|  | } else { | 
|  | // The storage order does not allow us to use reallocation. | 
|  | Derived tmp(other); | 
|  | const Index common_rows = numext::mini(tmp.rows(), _this.rows()); | 
|  | const Index common_cols = numext::mini(tmp.cols(), _this.cols()); | 
|  | tmp.block(0, 0, common_rows, common_cols) = _this.block(0, 0, common_rows, common_cols); | 
|  | _this.derived().swap(tmp); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Here, the specialization for vectors inherits from the general matrix case | 
|  | // to allow calling .conservativeResize(rows,cols) on vectors. | 
|  | template <typename Derived, typename OtherDerived> | 
|  | struct conservative_resize_like_impl<Derived, OtherDerived, true> | 
|  | : conservative_resize_like_impl<Derived, OtherDerived, false> { | 
|  | typedef conservative_resize_like_impl<Derived, OtherDerived, false> Base; | 
|  | using Base::IsRelocatable; | 
|  | using Base::run; | 
|  |  | 
|  | static void run(DenseBase<Derived>& _this, Index size) { | 
|  | const Index new_rows = Derived::RowsAtCompileTime == 1 ? 1 : size; | 
|  | const Index new_cols = Derived::RowsAtCompileTime == 1 ? size : 1; | 
|  | if (IsRelocatable) | 
|  | _this.derived().m_storage.conservativeResize(size, new_rows, new_cols); | 
|  | else | 
|  | Base::run(_this.derived(), new_rows, new_cols); | 
|  | } | 
|  |  | 
|  | static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) { | 
|  | if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; | 
|  |  | 
|  | const Index num_new_elements = other.size() - _this.size(); | 
|  |  | 
|  | const Index new_rows = Derived::RowsAtCompileTime == 1 ? 1 : other.rows(); | 
|  | const Index new_cols = Derived::RowsAtCompileTime == 1 ? other.cols() : 1; | 
|  | if (IsRelocatable) | 
|  | _this.derived().m_storage.conservativeResize(other.size(), new_rows, new_cols); | 
|  | else | 
|  | Base::run(_this.derived(), new_rows, new_cols); | 
|  |  | 
|  | if (num_new_elements > 0) _this.tail(num_new_elements) = other.tail(num_new_elements); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> | 
|  | struct matrix_swap_impl { | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(MatrixTypeA& a, MatrixTypeB& b) { a.base().swap(b); } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixTypeA, typename MatrixTypeB> | 
|  | struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true> { | 
|  | EIGEN_DEVICE_FUNC static inline void run(MatrixTypeA& a, MatrixTypeB& b) { | 
|  | static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_DENSESTORAGEBASE_H |