|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_TRANSPOSE_H | 
|  | #define EIGEN_TRANSPOSE_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | template <typename MatrixType> | 
|  | struct traits<Transpose<MatrixType> > : public traits<MatrixType> { | 
|  | typedef typename ref_selector<MatrixType>::type MatrixTypeNested; | 
|  | typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNestedPlain; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0, | 
|  | Flags0 = traits<MatrixTypeNestedPlain>::Flags & ~(LvalueBit | NestByRefBit), | 
|  | Flags1 = Flags0 | FlagsLvalueBit, | 
|  | Flags = Flags1 ^ RowMajorBit, | 
|  | InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret, | 
|  | OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret | 
|  | }; | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | template <typename MatrixType, typename StorageKind> | 
|  | class TransposeImpl; | 
|  |  | 
|  | /** \class Transpose | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief Expression of the transpose of a matrix | 
|  | * | 
|  | * \tparam MatrixType the type of the object of which we are taking the transpose | 
|  | * | 
|  | * This class represents an expression of the transpose of a matrix. | 
|  | * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint() | 
|  | * and most of the time this is the only way it is used. | 
|  | * | 
|  | * \sa MatrixBase::transpose(), MatrixBase::adjoint() | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | class Transpose : public TransposeImpl<MatrixType, typename internal::traits<MatrixType>::StorageKind> { | 
|  | public: | 
|  | typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested; | 
|  |  | 
|  | typedef typename TransposeImpl<MatrixType, typename internal::traits<MatrixType>::StorageKind>::Base Base; | 
|  | EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose) | 
|  | typedef internal::remove_all_t<MatrixType> NestedExpression; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Transpose(MatrixType& matrix) : m_matrix(matrix) {} | 
|  |  | 
|  | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose) | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.cols(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.rows(); } | 
|  |  | 
|  | /** \returns the nested expression */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const internal::remove_all_t<MatrixTypeNested>& nestedExpression() const { | 
|  | return m_matrix; | 
|  | } | 
|  |  | 
|  | /** \returns the nested expression */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::remove_reference_t<MatrixTypeNested>& nestedExpression() { | 
|  | return m_matrix; | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index nrows, Index ncols) { m_matrix.resize(ncols, nrows); } | 
|  |  | 
|  | protected: | 
|  | typename internal::ref_selector<MatrixType>::non_const_type m_matrix; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename MatrixType, bool HasDirectAccess = has_direct_access<MatrixType>::ret> | 
|  | struct TransposeImpl_base { | 
|  | typedef typename dense_xpr_base<Transpose<MatrixType> >::type type; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | struct TransposeImpl_base<MatrixType, false> { | 
|  | typedef typename dense_xpr_base<Transpose<MatrixType> >::type type; | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | // Generic API dispatcher | 
|  | template <typename XprType, typename StorageKind> | 
|  | class TransposeImpl : public internal::generic_xpr_base<Transpose<XprType> >::type { | 
|  | public: | 
|  | typedef typename internal::generic_xpr_base<Transpose<XprType> >::type Base; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | class TransposeImpl<MatrixType, Dense> : public internal::TransposeImpl_base<MatrixType>::type { | 
|  | public: | 
|  | typedef typename internal::TransposeImpl_base<MatrixType>::type Base; | 
|  | using Base::coeffRef; | 
|  | EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>) | 
|  | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TransposeImpl) | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index innerStride() const { return derived().nestedExpression().innerStride(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outerStride() const { return derived().nestedExpression().outerStride(); } | 
|  |  | 
|  | typedef std::conditional_t<internal::is_lvalue<MatrixType>::value, Scalar, const Scalar> ScalarWithConstIfNotLvalue; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarWithConstIfNotLvalue* data() { | 
|  | return derived().nestedExpression().data(); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar* data() const { return derived().nestedExpression().data(); } | 
|  |  | 
|  | // FIXME: shall we keep the const version of coeffRef? | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const { | 
|  | return derived().nestedExpression().coeffRef(colId, rowId); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const { | 
|  | return derived().nestedExpression().coeffRef(index); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TransposeImpl) | 
|  | }; | 
|  |  | 
|  | /** \returns an expression of the transpose of *this. | 
|  | * | 
|  | * Example: \include MatrixBase_transpose.cpp | 
|  | * Output: \verbinclude MatrixBase_transpose.out | 
|  | * | 
|  | * \warning If you want to replace a matrix by its own transpose, do \b NOT do this: | 
|  | * \code | 
|  | * m = m.transpose(); // bug!!! caused by aliasing effect | 
|  | * \endcode | 
|  | * Instead, use the transposeInPlace() method: | 
|  | * \code | 
|  | * m.transposeInPlace(); | 
|  | * \endcode | 
|  | * which gives Eigen good opportunities for optimization, or alternatively you can also do: | 
|  | * \code | 
|  | * m = m.transpose().eval(); | 
|  | * \endcode | 
|  | * | 
|  | * \sa transposeInPlace(), adjoint() */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename DenseBase<Derived>::TransposeReturnType DenseBase<Derived>::transpose() { | 
|  | return TransposeReturnType(derived()); | 
|  | } | 
|  |  | 
|  | /** This is the const version of transpose(). | 
|  | * | 
|  | * Make sure you read the warning for transpose() ! | 
|  | * | 
|  | * \sa transposeInPlace(), adjoint() */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstTransposeReturnType | 
|  | DenseBase<Derived>::transpose() const { | 
|  | return ConstTransposeReturnType(derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the adjoint (i.e. conjugate transpose) of *this. | 
|  | * | 
|  | * Example: \include MatrixBase_adjoint.cpp | 
|  | * Output: \verbinclude MatrixBase_adjoint.out | 
|  | * | 
|  | * \warning If you want to replace a matrix by its own adjoint, do \b NOT do this: | 
|  | * \code | 
|  | * m = m.adjoint(); // bug!!! caused by aliasing effect | 
|  | * \endcode | 
|  | * Instead, use the adjointInPlace() method: | 
|  | * \code | 
|  | * m.adjointInPlace(); | 
|  | * \endcode | 
|  | * which gives Eigen good opportunities for optimization, or alternatively you can also do: | 
|  | * \code | 
|  | * m = m.adjoint().eval(); | 
|  | * \endcode | 
|  | * | 
|  | * \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::AdjointReturnType MatrixBase<Derived>::adjoint() const { | 
|  | return AdjointReturnType(this->transpose()); | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * "in place" transpose implementation | 
|  | ***************************************************************************/ | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename MatrixType, | 
|  | bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && | 
|  | MatrixType::RowsAtCompileTime != Dynamic, | 
|  | bool MatchPacketSize = | 
|  | (int(MatrixType::RowsAtCompileTime) == int(internal::packet_traits<typename MatrixType::Scalar>::size)) && | 
|  | (internal::evaluator<MatrixType>::Flags & PacketAccessBit)> | 
|  | struct inplace_transpose_selector; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | struct inplace_transpose_selector<MatrixType, true, false> {  // square matrix | 
|  | static void run(MatrixType& m) { | 
|  | m.matrix().template triangularView<StrictlyUpper>().swap( | 
|  | m.matrix().transpose().template triangularView<StrictlyUpper>()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | struct inplace_transpose_selector<MatrixType, true, true> {  // PacketSize x PacketSize | 
|  | static void run(MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename internal::packet_traits<typename MatrixType::Scalar>::type Packet; | 
|  | const Index PacketSize = internal::packet_traits<Scalar>::size; | 
|  | const Index Alignment = internal::evaluator<MatrixType>::Alignment; | 
|  | PacketBlock<Packet> A; | 
|  | for (Index i = 0; i < PacketSize; ++i) A.packet[i] = m.template packetByOuterInner<Alignment>(i, 0); | 
|  | internal::ptranspose(A); | 
|  | for (Index i = 0; i < PacketSize; ++i) | 
|  | m.template writePacket<Alignment>(m.rowIndexByOuterInner(i, 0), m.colIndexByOuterInner(i, 0), A.packet[i]); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, Index Alignment> | 
|  | void BlockedInPlaceTranspose(MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename internal::packet_traits<typename MatrixType::Scalar>::type Packet; | 
|  | const Index PacketSize = internal::packet_traits<Scalar>::size; | 
|  | eigen_assert(m.rows() == m.cols()); | 
|  | int row_start = 0; | 
|  | for (; row_start + PacketSize <= m.rows(); row_start += PacketSize) { | 
|  | for (int col_start = row_start; col_start + PacketSize <= m.cols(); col_start += PacketSize) { | 
|  | PacketBlock<Packet> A; | 
|  | if (row_start == col_start) { | 
|  | for (Index i = 0; i < PacketSize; ++i) | 
|  | A.packet[i] = m.template packetByOuterInner<Alignment>(row_start + i, col_start); | 
|  | internal::ptranspose(A); | 
|  | for (Index i = 0; i < PacketSize; ++i) | 
|  | m.template writePacket<Alignment>(m.rowIndexByOuterInner(row_start + i, col_start), | 
|  | m.colIndexByOuterInner(row_start + i, col_start), A.packet[i]); | 
|  | } else { | 
|  | PacketBlock<Packet> B; | 
|  | for (Index i = 0; i < PacketSize; ++i) { | 
|  | A.packet[i] = m.template packetByOuterInner<Alignment>(row_start + i, col_start); | 
|  | B.packet[i] = m.template packetByOuterInner<Alignment>(col_start + i, row_start); | 
|  | } | 
|  | internal::ptranspose(A); | 
|  | internal::ptranspose(B); | 
|  | for (Index i = 0; i < PacketSize; ++i) { | 
|  | m.template writePacket<Alignment>(m.rowIndexByOuterInner(row_start + i, col_start), | 
|  | m.colIndexByOuterInner(row_start + i, col_start), B.packet[i]); | 
|  | m.template writePacket<Alignment>(m.rowIndexByOuterInner(col_start + i, row_start), | 
|  | m.colIndexByOuterInner(col_start + i, row_start), A.packet[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | for (Index row = row_start; row < m.rows(); ++row) { | 
|  | m.matrix().row(row).head(row).swap(m.matrix().col(row).head(row).transpose()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, bool MatchPacketSize> | 
|  | struct inplace_transpose_selector<MatrixType, false, MatchPacketSize> {  // non square or dynamic matrix | 
|  | static void run(MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | if (m.rows() == m.cols()) { | 
|  | const Index PacketSize = internal::packet_traits<Scalar>::size; | 
|  | if (!NumTraits<Scalar>::IsComplex && m.rows() >= PacketSize) { | 
|  | if ((m.rows() % PacketSize) == 0) | 
|  | BlockedInPlaceTranspose<MatrixType, internal::evaluator<MatrixType>::Alignment>(m); | 
|  | else | 
|  | BlockedInPlaceTranspose<MatrixType, Unaligned>(m); | 
|  | } else { | 
|  | m.matrix().template triangularView<StrictlyUpper>().swap( | 
|  | m.matrix().transpose().template triangularView<StrictlyUpper>()); | 
|  | } | 
|  | } else { | 
|  | m = m.transpose().eval(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** This is the "in place" version of transpose(): it replaces \c *this by its own transpose. | 
|  | * Thus, doing | 
|  | * \code | 
|  | * m.transposeInPlace(); | 
|  | * \endcode | 
|  | * has the same effect on m as doing | 
|  | * \code | 
|  | * m = m.transpose().eval(); | 
|  | * \endcode | 
|  | * and is faster and also safer because in the latter line of code, forgetting the eval() results | 
|  | * in a bug caused by \ref TopicAliasing "aliasing". | 
|  | * | 
|  | * Notice however that this method is only useful if you want to replace a matrix by its own transpose. | 
|  | * If you just need the transpose of a matrix, use transpose(). | 
|  | * | 
|  | * \note if the matrix is not square, then \c *this must be a resizable matrix. | 
|  | * This excludes (non-square) fixed-size matrices, block-expressions and maps. | 
|  | * | 
|  | * \sa transpose(), adjoint(), adjointInPlace() */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline void DenseBase<Derived>::transposeInPlace() { | 
|  | eigen_assert((rows() == cols() || (RowsAtCompileTime == Dynamic && ColsAtCompileTime == Dynamic)) && | 
|  | "transposeInPlace() called on a non-square non-resizable matrix"); | 
|  | internal::inplace_transpose_selector<Derived>::run(derived()); | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * "in place" adjoint implementation | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose. | 
|  | * Thus, doing | 
|  | * \code | 
|  | * m.adjointInPlace(); | 
|  | * \endcode | 
|  | * has the same effect on m as doing | 
|  | * \code | 
|  | * m = m.adjoint().eval(); | 
|  | * \endcode | 
|  | * and is faster and also safer because in the latter line of code, forgetting the eval() results | 
|  | * in a bug caused by aliasing. | 
|  | * | 
|  | * Notice however that this method is only useful if you want to replace a matrix by its own adjoint. | 
|  | * If you just need the adjoint of a matrix, use adjoint(). | 
|  | * | 
|  | * \note if the matrix is not square, then \c *this must be a resizable matrix. | 
|  | * This excludes (non-square) fixed-size matrices, block-expressions and maps. | 
|  | * | 
|  | * \sa transpose(), adjoint(), transposeInPlace() */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline void MatrixBase<Derived>::adjointInPlace() { | 
|  | derived() = adjoint().eval(); | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_NO_DEBUG | 
|  |  | 
|  | // The following is to detect aliasing problems in most common cases. | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <bool DestIsTransposed, typename OtherDerived> | 
|  | struct check_transpose_aliasing_compile_time_selector { | 
|  | enum { ret = bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed }; | 
|  | }; | 
|  |  | 
|  | template <bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB> | 
|  | struct check_transpose_aliasing_compile_time_selector<DestIsTransposed, CwiseBinaryOp<BinOp, DerivedA, DerivedB> > { | 
|  | enum { | 
|  | ret = bool(blas_traits<DerivedA>::IsTransposed) != DestIsTransposed || | 
|  | bool(blas_traits<DerivedB>::IsTransposed) != DestIsTransposed | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, bool DestIsTransposed, typename OtherDerived> | 
|  | struct check_transpose_aliasing_run_time_selector { | 
|  | EIGEN_DEVICE_FUNC static bool run(const Scalar* dest, const OtherDerived& src) { | 
|  | return (bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed) && | 
|  | (dest != 0 && dest == (const Scalar*)extract_data(src)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB> | 
|  | struct check_transpose_aliasing_run_time_selector<Scalar, DestIsTransposed, CwiseBinaryOp<BinOp, DerivedA, DerivedB> > { | 
|  | EIGEN_DEVICE_FUNC static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp, DerivedA, DerivedB>& src) { | 
|  | return ((blas_traits<DerivedA>::IsTransposed != DestIsTransposed) && | 
|  | (dest != 0 && dest == (const Scalar*)extract_data(src.lhs()))) || | 
|  | ((blas_traits<DerivedB>::IsTransposed != DestIsTransposed) && | 
|  | (dest != 0 && dest == (const Scalar*)extract_data(src.rhs()))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing, | 
|  | // is because when the condition controlling the assert is known at compile time, ICC emits a warning. | 
|  | // This is actually a good warning: in expressions that don't have any transposing, the condition is | 
|  | // known at compile time to be false, and using that, we can avoid generating the code of the assert again | 
|  | // and again for all these expressions that don't need it. | 
|  |  | 
|  | template <typename Derived, typename OtherDerived, | 
|  | bool MightHaveTransposeAliasing = | 
|  | check_transpose_aliasing_compile_time_selector<blas_traits<Derived>::IsTransposed, OtherDerived>::ret> | 
|  | struct checkTransposeAliasing_impl { | 
|  | EIGEN_DEVICE_FUNC static void run(const Derived& dst, const OtherDerived& other) { | 
|  | eigen_assert( | 
|  | (!check_transpose_aliasing_run_time_selector<typename Derived::Scalar, blas_traits<Derived>::IsTransposed, | 
|  | OtherDerived>::run(extract_data(dst), other)) && | 
|  | "aliasing detected during transposition, use transposeInPlace() " | 
|  | "or evaluate the rhs into a temporary using .eval()"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Derived, typename OtherDerived> | 
|  | struct checkTransposeAliasing_impl<Derived, OtherDerived, false> { | 
|  | EIGEN_DEVICE_FUNC static void run(const Derived&, const OtherDerived&) {} | 
|  | }; | 
|  |  | 
|  | template <typename Dst, typename Src> | 
|  | EIGEN_DEVICE_FUNC inline void check_for_aliasing(const Dst& dst, const Src& src) { | 
|  | if ((!Dst::IsVectorAtCompileTime) && dst.rows() > 1 && dst.cols() > 1) | 
|  | internal::checkTransposeAliasing_impl<Dst, Src>::run(dst, src); | 
|  | } | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | #endif  // EIGEN_NO_DEBUG | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_TRANSPOSE_H |