| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_TRANSPOSITIONS_H | 
 | #define EIGEN_TRANSPOSITIONS_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | template <typename Derived> | 
 | class TranspositionsBase { | 
 |   typedef internal::traits<Derived> Traits; | 
 |  | 
 |  public: | 
 |   typedef typename Traits::IndicesType IndicesType; | 
 |   typedef typename IndicesType::Scalar StorageIndex; | 
 |   typedef Eigen::Index Index;  ///< \deprecated since Eigen 3.3 | 
 |  | 
 |   EIGEN_DEVICE_FUNC Derived& derived() { return *static_cast<Derived*>(this); } | 
 |   EIGEN_DEVICE_FUNC const Derived& derived() const { return *static_cast<const Derived*>(this); } | 
 |  | 
 |   /** Copies the \a other transpositions into \c *this */ | 
 |   template <typename OtherDerived> | 
 |   Derived& operator=(const TranspositionsBase<OtherDerived>& other) { | 
 |     indices() = other.indices(); | 
 |     return derived(); | 
 |   } | 
 |  | 
 |   /** \returns the number of transpositions */ | 
 |   EIGEN_DEVICE_FUNC Index size() const { return indices().size(); } | 
 |   /** \returns the number of rows of the equivalent permutation matrix */ | 
 |   EIGEN_DEVICE_FUNC Index rows() const { return indices().size(); } | 
 |   /** \returns the number of columns of the equivalent permutation matrix */ | 
 |   EIGEN_DEVICE_FUNC Index cols() const { return indices().size(); } | 
 |  | 
 |   /** Direct access to the underlying index vector */ | 
 |   EIGEN_DEVICE_FUNC inline const StorageIndex& coeff(Index i) const { return indices().coeff(i); } | 
 |   /** Direct access to the underlying index vector */ | 
 |   inline StorageIndex& coeffRef(Index i) { return indices().coeffRef(i); } | 
 |   /** Direct access to the underlying index vector */ | 
 |   inline const StorageIndex& operator()(Index i) const { return indices()(i); } | 
 |   /** Direct access to the underlying index vector */ | 
 |   inline StorageIndex& operator()(Index i) { return indices()(i); } | 
 |   /** Direct access to the underlying index vector */ | 
 |   inline const StorageIndex& operator[](Index i) const { return indices()(i); } | 
 |   /** Direct access to the underlying index vector */ | 
 |   inline StorageIndex& operator[](Index i) { return indices()(i); } | 
 |  | 
 |   /** const version of indices(). */ | 
 |   EIGEN_DEVICE_FUNC const IndicesType& indices() const { return derived().indices(); } | 
 |   /** \returns a reference to the stored array representing the transpositions. */ | 
 |   EIGEN_DEVICE_FUNC IndicesType& indices() { return derived().indices(); } | 
 |  | 
 |   /** Resizes to given size. */ | 
 |   inline void resize(Index newSize) { indices().resize(newSize); } | 
 |  | 
 |   /** Sets \c *this to represents an identity transformation */ | 
 |   void setIdentity() { | 
 |     for (StorageIndex i = 0; i < indices().size(); ++i) coeffRef(i) = i; | 
 |   } | 
 |  | 
 |   // FIXME: do we want such methods ? | 
 |   // might be useful when the target matrix expression is complex, e.g.: | 
 |   // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..); | 
 |   /* | 
 |   template<typename MatrixType> | 
 |   void applyForwardToRows(MatrixType& mat) const | 
 |   { | 
 |     for(Index k=0 ; k<size() ; ++k) | 
 |       if(m_indices(k)!=k) | 
 |         mat.row(k).swap(mat.row(m_indices(k))); | 
 |   } | 
 |  | 
 |   template<typename MatrixType> | 
 |   void applyBackwardToRows(MatrixType& mat) const | 
 |   { | 
 |     for(Index k=size()-1 ; k>=0 ; --k) | 
 |       if(m_indices(k)!=k) | 
 |         mat.row(k).swap(mat.row(m_indices(k))); | 
 |   } | 
 |   */ | 
 |  | 
 |   /** \returns the inverse transformation */ | 
 |   inline Transpose<TranspositionsBase> inverse() const { return Transpose<TranspositionsBase>(derived()); } | 
 |  | 
 |   /** \returns the tranpose transformation */ | 
 |   inline Transpose<TranspositionsBase> transpose() const { return Transpose<TranspositionsBase>(derived()); } | 
 |  | 
 |  protected: | 
 | }; | 
 |  | 
 | namespace internal { | 
 | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_> | 
 | struct traits<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> > | 
 |     : traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> > { | 
 |   typedef Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; | 
 |   typedef TranspositionsStorage StorageKind; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | /** \class Transpositions | 
 |  * \ingroup Core_Module | 
 |  * | 
 |  * \brief Represents a sequence of transpositions (row/column interchange) | 
 |  * | 
 |  * \tparam SizeAtCompileTime the number of transpositions, or Dynamic | 
 |  * \tparam MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to | 
 |  * SizeAtCompileTime. Most of the time, you should not have to specify it. | 
 |  * | 
 |  * This class represents a permutation transformation as a sequence of \em n transpositions | 
 |  * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices. | 
 |  * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges | 
 |  * the rows \c i and \c indices[i] of the matrix \c M. | 
 |  * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange. | 
 |  * | 
 |  * Compared to the class PermutationMatrix, such a sequence of transpositions is what is | 
 |  * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place. | 
 |  * | 
 |  * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example: | 
 |  * \code | 
 |  * Transpositions tr; | 
 |  * MatrixXf mat; | 
 |  * mat = tr * mat; | 
 |  * \endcode | 
 |  * In this example, we detect that the matrix appears on both side, and so the transpositions | 
 |  * are applied in-place without any temporary or extra copy. | 
 |  * | 
 |  * \sa class PermutationMatrix | 
 |  */ | 
 |  | 
 | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_> | 
 | class Transpositions | 
 |     : public TranspositionsBase<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> > { | 
 |   typedef internal::traits<Transpositions> Traits; | 
 |  | 
 |  public: | 
 |   typedef TranspositionsBase<Transpositions> Base; | 
 |   typedef typename Traits::IndicesType IndicesType; | 
 |   typedef typename IndicesType::Scalar StorageIndex; | 
 |  | 
 |   inline Transpositions() {} | 
 |  | 
 |   /** Copy constructor. */ | 
 |   template <typename OtherDerived> | 
 |   inline Transpositions(const TranspositionsBase<OtherDerived>& other) : m_indices(other.indices()) {} | 
 |  | 
 |   /** Generic constructor from expression of the transposition indices. */ | 
 |   template <typename Other> | 
 |   explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices) {} | 
 |  | 
 |   /** Copies the \a other transpositions into \c *this */ | 
 |   template <typename OtherDerived> | 
 |   Transpositions& operator=(const TranspositionsBase<OtherDerived>& other) { | 
 |     return Base::operator=(other); | 
 |   } | 
 |  | 
 |   /** Constructs an uninitialized permutation matrix of given size. | 
 |    */ | 
 |   inline Transpositions(Index size) : m_indices(size) {} | 
 |  | 
 |   /** const version of indices(). */ | 
 |   EIGEN_DEVICE_FUNC const IndicesType& indices() const { return m_indices; } | 
 |   /** \returns a reference to the stored array representing the transpositions. */ | 
 |   EIGEN_DEVICE_FUNC IndicesType& indices() { return m_indices; } | 
 |  | 
 |  protected: | 
 |   IndicesType m_indices; | 
 | }; | 
 |  | 
 | namespace internal { | 
 | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_> | 
 | struct traits<Map<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_> > | 
 |     : traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> > { | 
 |   typedef Map<const Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, PacketAccess_> IndicesType; | 
 |   typedef StorageIndex_ StorageIndex; | 
 |   typedef TranspositionsStorage StorageKind; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess> | 
 | class Map<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess> | 
 |     : public TranspositionsBase< | 
 |           Map<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess> > { | 
 |   typedef internal::traits<Map> Traits; | 
 |  | 
 |  public: | 
 |   typedef TranspositionsBase<Map> Base; | 
 |   typedef typename Traits::IndicesType IndicesType; | 
 |   typedef typename IndicesType::Scalar StorageIndex; | 
 |  | 
 |   explicit inline Map(const StorageIndex* indicesPtr) : m_indices(indicesPtr) {} | 
 |  | 
 |   inline Map(const StorageIndex* indicesPtr, Index size) : m_indices(indicesPtr, size) {} | 
 |  | 
 |   /** Copies the \a other transpositions into \c *this */ | 
 |   template <typename OtherDerived> | 
 |   Map& operator=(const TranspositionsBase<OtherDerived>& other) { | 
 |     return Base::operator=(other); | 
 |   } | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   /** This is a special case of the templated operator=. Its purpose is to | 
 |    * prevent a default operator= from hiding the templated operator=. | 
 |    */ | 
 |   Map& operator=(const Map& other) { | 
 |     m_indices = other.m_indices; | 
 |     return *this; | 
 |   } | 
 | #endif | 
 |  | 
 |   /** const version of indices(). */ | 
 |   EIGEN_DEVICE_FUNC const IndicesType& indices() const { return m_indices; } | 
 |  | 
 |   /** \returns a reference to the stored array representing the transpositions. */ | 
 |   EIGEN_DEVICE_FUNC IndicesType& indices() { return m_indices; } | 
 |  | 
 |  protected: | 
 |   IndicesType m_indices; | 
 | }; | 
 |  | 
 | namespace internal { | 
 | template <typename IndicesType_> | 
 | struct traits<TranspositionsWrapper<IndicesType_> > : traits<PermutationWrapper<IndicesType_> > { | 
 |   typedef TranspositionsStorage StorageKind; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | template <typename IndicesType_> | 
 | class TranspositionsWrapper : public TranspositionsBase<TranspositionsWrapper<IndicesType_> > { | 
 |   typedef internal::traits<TranspositionsWrapper> Traits; | 
 |  | 
 |  public: | 
 |   typedef TranspositionsBase<TranspositionsWrapper> Base; | 
 |   typedef typename Traits::IndicesType IndicesType; | 
 |   typedef typename IndicesType::Scalar StorageIndex; | 
 |  | 
 |   explicit inline TranspositionsWrapper(IndicesType& indices) : m_indices(indices) {} | 
 |  | 
 |   /** Copies the \a other transpositions into \c *this */ | 
 |   template <typename OtherDerived> | 
 |   TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other) { | 
 |     return Base::operator=(other); | 
 |   } | 
 |  | 
 |   /** const version of indices(). */ | 
 |   EIGEN_DEVICE_FUNC const IndicesType& indices() const { return m_indices; } | 
 |  | 
 |   /** \returns a reference to the stored array representing the transpositions. */ | 
 |   EIGEN_DEVICE_FUNC IndicesType& indices() { return m_indices; } | 
 |  | 
 |  protected: | 
 |   typename IndicesType::Nested m_indices; | 
 | }; | 
 |  | 
 | /** \returns the \a matrix with the \a transpositions applied to the columns. | 
 |  */ | 
 | template <typename MatrixDerived, typename TranspositionsDerived> | 
 | EIGEN_DEVICE_FUNC const Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct> operator*( | 
 |     const MatrixBase<MatrixDerived>& matrix, const TranspositionsBase<TranspositionsDerived>& transpositions) { | 
 |   return Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct>(matrix.derived(), transpositions.derived()); | 
 | } | 
 |  | 
 | /** \returns the \a matrix with the \a transpositions applied to the rows. | 
 |  */ | 
 | template <typename TranspositionsDerived, typename MatrixDerived> | 
 | EIGEN_DEVICE_FUNC const Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct> operator*( | 
 |     const TranspositionsBase<TranspositionsDerived>& transpositions, const MatrixBase<MatrixDerived>& matrix) { | 
 |   return Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct>(transpositions.derived(), matrix.derived()); | 
 | } | 
 |  | 
 | // Template partial specialization for transposed/inverse transpositions | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename Derived> | 
 | struct traits<Transpose<TranspositionsBase<Derived> > > : traits<Derived> {}; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | template <typename TranspositionsDerived> | 
 | class Transpose<TranspositionsBase<TranspositionsDerived> > { | 
 |   typedef TranspositionsDerived TranspositionType; | 
 |   typedef typename TranspositionType::IndicesType IndicesType; | 
 |  | 
 |  public: | 
 |   explicit Transpose(const TranspositionType& t) : m_transpositions(t) {} | 
 |  | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_transpositions.size(); } | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_transpositions.size(); } | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_transpositions.size(); } | 
 |  | 
 |   /** \returns the \a matrix with the inverse transpositions applied to the columns. | 
 |    */ | 
 |   template <typename OtherDerived> | 
 |   friend const Product<OtherDerived, Transpose, AliasFreeProduct> operator*(const MatrixBase<OtherDerived>& matrix, | 
 |                                                                             const Transpose& trt) { | 
 |     return Product<OtherDerived, Transpose, AliasFreeProduct>(matrix.derived(), trt); | 
 |   } | 
 |  | 
 |   /** \returns the \a matrix with the inverse transpositions applied to the rows. | 
 |    */ | 
 |   template <typename OtherDerived> | 
 |   const Product<Transpose, OtherDerived, AliasFreeProduct> operator*(const MatrixBase<OtherDerived>& matrix) const { | 
 |     return Product<Transpose, OtherDerived, AliasFreeProduct>(*this, matrix.derived()); | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC const TranspositionType& nestedExpression() const { return m_transpositions; } | 
 |  | 
 |  protected: | 
 |   const TranspositionType& m_transpositions; | 
 | }; | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_TRANSPOSITIONS_H |